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PREFACE

When we agreed to edit this book for a second edition, we looked forward to
a bit of updating and including some of our latest research results. However,
the effort grew rapidly beyond our original vision. The use of genetic algo-
rithms (GAs) is a quickly evolving field of research, and there is much new to
recommend. Practitioners are constantly dreaming up new ways to improve
and use GAs. Therefore this book differs greatly from the first edition.

We continue to emphasize the “Practical” part of the title. This book was
written for the practicing scientist, engineer, economist, artist, and whoever
might possibly become interested in learning the basics of GAs. We make no
claims of including the latest research on convergence theory: instead, we refer
the reader to references that do. We do, however, give the reader a flavor 
for how GAs are being used and how to fiddle with them to get the best 
performance.

The biggest addition is including code—both MATLAB and a bit of High-
Performance Fortran. We hope the readers find these a useful start to their
own applications. There has also been a good bit of updating and expanding.
Chapter 1 has been rewritten to give a more complete picture of traditional
optimization. Chapters 2 and 3 remain dedicated to introducing the mechan-
ics of the binary and continuous GA. The examples in those chapters, as well
as throughout the book, now reflect our more recent research on choosing GA
parameters. Examples have been added to Chapters 4 and 6 that broaden the
view of problems being solved. Chapter 5 has greatly expanded its recom-
mendations of methods to improve GA performance. Sections have been
added on hybrid GAs, parallel GAs, and messy GAs. Discussions of parame-
ter selection reflect new research. Chapter 7 is new. Its purpose is to give the
reader a flavor for other artificial intelligence methods of optimization, like
simulated annealing, ant colony optimization, and evolutionary strategies. We
hope this will help put GAs in context with other modern developments. We
included code listings and test functions in the appendixes. Exercises appear
at the end of each chapter. There is no solution manual because the exercises
are open-ended. These should be helpful to anyone wishing to use this book
as a text.

In addition to the people thanked in the first edition, we want to recognize
the students and colleagues whose insight has contributed to this effort. Bonny
Haupt did the work included in Section 4.6 on horse evolution. Jaymon Knight
translated our GA to High-Performance Fortran. David Omer and Jesse

xi



xii PREFACE

Warrick each had a hand in the air pollution problem of Section 6.8. We’ve
discussed our applications with numerous colleagues and appreciate their
feedback.

We wish the readers well in their own forays into using GAs. We look
forward to seeing their interesting applications in the future.

Randy L. Haupt
State College, Pennsylvania Sue Ellen Haupt
February 2004



PREFACE TO FIRST EDITION

The book has been organized to take the genetic algorithm in stages. Chapter
1 lays the foundation for the genetic algorithm by discussing numerical opti-
mization and introducing some of the traditional minimum seeking algorithms.
Next, the idea of modeling natural processes on the computer is introduced
through a discussion of annealing and the genetic algorithm. A brief genetics
background is supplied to help the reader understand the terminology and
rationale for the genetic operators.The genetic algorithm comes in two flavors:
binary parameter and real parameter. Chapter 2 provides an introduction to
the binary genetic algorithm, which is the most common form of the algorithm.
Parameters are quantized, so there are a finite number of combinations. This
form of the algorithm is ideal for dealing with parameters that can assume
only a finite number of values. Chapter 3 introduces the continuous parame-
ter genetic algorithm.This algorithm allows the parameters to assume any real
value within certain constraints. Chapter 4 uses the algorithms developed in
the previous chapters to solve some problems of interest to engineers and sci-
entists. Chapter 5 returns to building a good genetic algorithm, extending and
expanding upon some of the components of the genetic algorithm. Chapter 6
attacks more difficult technical problems. Finally, Chapter 7 surveys some of
the current extensions to genetic algorithms and applications, and gives advice
on where to get more information on genetic algorithms. Some aids are sup-
plied to further help the budding genetic algorithmist. Appendix I lists some
genetic algorithm routines in pseudocode.A glossary and a list of symbols used
in this book are also included.

We are indebted to several friends and colleagues for their help. First, our
thanks goes to Dr. Christopher McCormack of Rome Laboratory for intro-
ducing us to genetic algorithms several years ago. The idea for writing this
book and the encouragement to write it, we owe to Professor Jianming Jin of
the University of Illinois. Finally, the excellent reviews by Professor Daniel
Pack, Major Cameron Wright, and Captain Gregory Toussaint of the United
States Air Force Academy were invaluable in the writing of this manuscript.

Randy L. Haupt
Sue Ellen Haupt

Reno, Nevada
September 1997
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CHAPTER 1

Introduction to Optimization

1

Optimization is the process of making something better. An engineer or sci-
entist conjures up a new idea and optimization improves on that idea. Opti-
mization consists in trying variations on an initial concept and using the
information gained to improve on the idea. A computer is the perfect tool for
optimization as long as the idea or variable influencing the idea can be input
in electronic format. Feed the computer some data and out comes the solu-
tion. Is this the only solution? Often times not. Is it the best solution? That’s
a tough question. Optimization is the math tool that we rely on to get these
answers.

This chapter begins with an elementary explanation of optimization, then
moves on to a historical development of minimum-seeking algorithms. A
seemingly simple example reveals many shortfalls of the typical minimum
seekers. Since the local optimizers of the past are limited, people have turned
to more global methods based upon biological processes. The chapter ends
with some background on biological genetics and a brief introduction to the
genetic algorithm (GA).

1.1 FINDING THE BEST SOLUTION

The terminology “best” solution implies that there is more than one solution
and the solutions are not of equal value. The definition of best is relative to
the problem at hand, its method of solution, and the tolerances allowed. Thus
the optimal solution depends on the person formulating the problem. Educa-
tion, opinions, bribes, and amount of sleep are factors influencing the defini-
tion of best. Some problems have exact answers or roots, and best has a specific
definition. Examples include best home run hitter in baseball and a solution
to a linear first-order differential equation. Other problems have various
minimum or maximum solutions known as optimal points or extrema, and best
may be a relative definition. Examples include best piece of artwork or best
musical composition.

Practical Genetic Algorithms, Second Edition, by Randy L. Haupt and Sue Ellen Haupt.
ISBN 0-471-45565-2 Copyright © 2004 John Wiley & Sons, Inc.



1.1.1 What Is Optimization?

Our lives confront us with many opportunities for optimization. What time do
we get up in the morning so that we maximize the amount of sleep yet still
make it to work on time? What is the best route to work? Which project do
we tackle first? When designing something, we shorten the length of this or
reduce the weight of that, as we want to minimize the cost or maximize 
the appeal of a product. Optimization is the process of adjusting the inputs to
or characteristics of a device, mathematical process, or experiment to find 
the minimum or maximum output or result (Figure 1.1). The input consists of
variables; the process or function is known as the cost function, objective 
function, or fitness function; and the output is the cost or fitness. If the 
process is an experiment, then the variables are physical inputs to the 
experiment.

For most of the examples in this book, we define the output from the
process or function as the cost. Since cost is something to be minimized, opti-
mization becomes minimization. Sometimes maximizing a function makes
more sense. To maximize a function, just slap a minus sign on the front of the
output and minimize. As an example, maximizing 1 - x2 over -1 £ x £ 1 is the
same as minimizing x2 - 1 over the same interval. Consequently in this book
we address the maximization of some function as a minimization problem.

Life is interesting due to the many decisions and seemingly random events
that take place. Quantum theory suggests there are an infinite number of
dimensions, and each dimension corresponds to a decision made. Life is 
also highly nonlinear, so chaos plays an important role too. A small perturba-
tion in the initial condition may result in a very different and unpre-
dictable solution. These theories suggest a high degree of complexity 
encountered when studying nature or designing products. Science developed
simple models to represent certain limited aspects of nature. Most of 
these simple (and usually linear) models have been optimized. In the 
future, scientists and engineers must tackle the unsolvable problems of 
the past, and optimization is a primary tool needed in the intellectual 
toolbox.

2 INTRODUCTION TO OPTIMIZATION

Figure 1.1 Diagram of a function or process that is to be optimized. Optimization
varies the input to achieve a desired output.



1.1.2 Root Finding versus Optimization

Approaches to optimization are akin to root or zero finding methods, only
harder. Bracketing the root or optimum is a major step in hunting it down.
For the one-variable case, finding one positive point and one negative point
brackets the zero. On the other hand, bracketing a minimum requires three
points, with the middle point having a lower value than either end point. In
the mathematical approach, root finding searches for zeros of a function, while
optimization finds zeros of the function derivative. Finding the function deriv-
ative adds one more step to the optimization process. Many times the deriva-
tive does not exist or is very difficult to find. We like the simplicity of root
finding problems, so we teach root finding techniques to students of engi-
neering, math, and science courses. Many technical problems are formulated
to find roots when they might be more naturally posed as optimization 
problems; except the toolbox containing the optimization tools is small and
inadequate.

Another difficulty with optimization is determining if a given minimum is
the best (global) minimum or a suboptimal (local) minimum. Root finding
doesn’t have this difficulty. One root is as good as another, since all roots force
the function to zero.

Finding the minimum of a nonlinear function is especially difficult. Typical
approaches to highly nonlinear problems involve either linearizing the
problem in a very confined region or restricting the optimization to a small
region. In short, we cheat.

1.1.3 Categories of Optimization

Figure 1.2 divides optimization algorithms into six categories. None of 
these six views or their branches are necessarily mutually exclusive. For
instance, a dynamic optimization problem could be either constrained or

FINDING THE BEST SOLUTION 3

Figure 1.2 Six categories of optimization algorithms.



unconstrained. In addition some of the variables may be discrete and others
continuous. Let’s begin at the top left of Figure 1.2 and work our way around
clockwise.

1. Trial-and-error optimization refers to the process of adjusting variables
that affect the output without knowing much about the process that produces
the output. A simple example is adjusting the rabbit ears on a TV to get the
best picture and audio reception. An antenna engineer can only guess at why
certain contortions of the rabbit ears result in a better picture than other con-
tortions. Experimentalists prefer this approach. Many great discoveries, like
the discovery and refinement of penicillin as an antibiotic, resulted from the
trial-and-error approach to optimization. In contrast, a mathematical formula
describes the objective function in function optimization. Various mathemat-
ical manipulations of the function lead to the optimal solution. Theoreticians
love this theoretical approach.

2. If there is only one variable, the optimization is one-dimensional. A
problem having more than one variable requires multidimensional optimiza-
tion. Optimization becomes increasingly difficult as the number of dimensions
increases. Many multidimensional optimization approaches generalize to a
series of one-dimensional approaches.

3. Dynamic optimization means that the output is a function of time, while
static means that the output is independent of time.When living in the suburbs
of Boston, there were several ways to drive back and forth to work. What was
the best route? From a distance point of view, the problem is static, and the
solution can be found using a map or the odometer of a car. In practice, this
problem is not simple because of the myriad of variations in the routes. The
shortest route isn’t necessarily the fastest route. Finding the fastest route is a
dynamic problem whose solution depends on the time of day, the weather,
accidents, and so on. The static problem is difficult to solve for the best solu-
tion, but the added dimension of time increases the challenge of solving the
dynamic problem.

4. Optimization can also be distinguished by either discrete or continuous
variables. Discrete variables have only a finite number of possible values,
whereas continuous variables have an infinite number of possible values. If we
are deciding in what order to attack a series of tasks on a list, discrete opti-
mization is employed. Discrete variable optimization is also known as com-
binatorial optimization, because the optimum solution consists of a certain
combination of variables from the finite pool of all possible variables.
However, if we are trying to find the minimum value of f(x) on a number line,
it is more appropriate to view the problem as continuous.

5. Variables often have limits or constraints. Constrained optimization
incorporates variable equalities and inequalities into the cost function. Uncon-
strained optimization allows the variables to take any value. A constrained
variable often converts into an unconstrained variable through a transforma-

4 INTRODUCTION TO OPTIMIZATION



tion of variables. Most numerical optimization routines work best with uncon-
strained variables. Consider the simple constrained example of minimizing 
f(x) over the interval -1 £ x £ 1. The variable converts x into an unconstrained
variable u by letting x = sin(u) and minimizing f(sin(u)) for any value of u.
When constrained optimization formulates variables in terms of linear 
equations and linear constraints, it is called a linear program. When the cost
equations or constraints are nonlinear, the problem becomes a nonlinear 
programming problem.

6. Some algorithms try to minimize the cost by starting from an initial 
set of variable values. These minimum seekers easily get stuck in local minima
but tend to be fast. They are the traditional optimization algorithms and are
generally based on calculus methods. Moving from one variable set to another
is based on some determinant sequence of steps. On the other hand, random
methods use some probabilistic calculations to find variable sets. They tend to
be slower but have greater success at finding the global minimum.

1.2 MINIMUM-SEEKING ALGORITHMS

Searching the cost surface (all possible function values) for the minimum cost
lies at the heart of all optimization routines. Usually a cost surface has many
peaks, valleys, and ridges. An optimization algorithm works much like a hiker
trying to find the minimum altitude in Rocky Mountain National Park. Start-
ing at some random location within the park, the goal is to intelligently
proceed to find the minimum altitude. There are many ways to hike or glis-
sade to the bottom from a single random point. Once the bottom is found,
however, there is no guarantee that an even lower point doesn’t lie over the
next ridge. Certain constraints, such as cliffs and bears, influence the path of
the search as well. Pure downhill approaches usually fail to find the global
optimum unless the cost surface is quadratic (bowl-shaped).

There are many good texts that describe optimization methods (e.g.,
Press et al., 1992; Cuthbert, 1987). A history is given by Boyer and Merzbach
(1991). Here we give a very brief review of the development of optimization
strategies.

1.2.1 Exhaustive Search

The brute force approach to optimization looks at a sufficiently fine sam-
pling of the cost function to find the global minimum. It is equivalent to spend-
ing the time, effort, and resources to thoroughly survey Rocky Mountain
National Park. In effect a topographical map can be generated by connecting
lines of equal elevation from an interpolation of the sampled points.
This exhaustive search requires an extremely large number of cost function
evaluations to find the optimum. For example, consider solving the two-
dimensional problem

MINIMUM-SEEKING ALGORITHMS 5



(1.1)

(1.2)

Figure 1.3 shows a three-dimensional plot of (1.1) in which x and y are sampled
at intervals of 0.1, requiring a total of 1012 function evaluations. This same
graph is shown as a contour plot with the global minimum of -18.5547 at (x,y)
= (0.9039, 0.8668) marked by a large black dot in Figure 1.4. In this case the
global minimum is easy to see. Graphs have aesthetic appeal but are only prac-
tical for one- and two-dimensional cost functions. Usually a list of function
values is generated over the sampled variables, and then the list is searched
for the minimum value. The exhaustive search does the surveying necessary
to produce an accurate topographic map. This approach requires checking an
extremely large but finite solution space with the number of combinations of
different variable values given by

(1.3)

where

V = number of different variable combinations
Nvar = total number of different variables
Qi = number of different values that variable i can attain

V Qi
i

Nvar

=
=

’
1

Subject to: and0 10 0 10£ £ £ £x y

Find the minimum of: f x y x x y y, sin . sin( ) = ( ) + ( )4 1 1 2
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Figure 1.3 Three-dimensional plot of (1.1) in which x and y are sampled at intervals
of 0.1.



With fine enough sampling, exhaustive searches don’t get stuck in local
minima and work for either continuous or discontinuous variables. However,
they take an extremely long time to find the global minimum. Another short-
fall of this approach is that the global minimum may be missed due to under-
sampling. It is easy to undersample when the cost function takes a long time
to calculate. Hence exhaustive searches are only practical for a small number
of variables in a limited search space.

A possible refinement to the exhaustive search includes first searching a
coarse sampling of the fitness function, then progressively narrowing the
search to promising regions with a finer toothed comb.This approach is similar
to first examining the terrain from a helicopter view, and then surveying the
valleys but not the peaks and ridges. It speeds convergence and increases the
number of variables that can be searched but also increases the odds of missing
the global minimum. Most optimization algorithms employ a variation of this
approach and start exploring a relatively large region of the cost surface (take
big steps); then they contract the search around the best solutions (take
smaller and smaller steps).

1.2.2 Analytical Optimization

Calculus provides the tools and elegance for finding the minimum of many
cost functions. The thought process can be simplified to a single variable for a
moment, and then an extremum is found by setting the first derivative of a
cost function to zero and solving for the variable value. If the second deriva-
tive is greater than zero, the extremum is a minimum, and conversely, if the

MINIMUM-SEEKING ALGORITHMS 7

Figure 1.4 Contour plot of (1.1).



second derivative is less than zero, the extremum is a maximum. One way to
find the extrema of a function of two or more variables is to take the gradi-
ent of the function and set it equal to zero, �f(x, y) = 0. For example, taking
the gradient of equation (1.1) results in

(1.4a)

and

(1.4b)

Next these equations are solved for their roots, xm and ym, which is a family of
lines. Extrema occur at the intersection of these lines. Note that these tran-
scendental equations may not always be separable, making it very difficult to
find the roots. Finally, the Laplacian of the function is calculated.

(1.5a)

and

(1.5b)

The roots are minima when �2f(xm, ym) > 0. Unfortunately, this process doesn’t
give a clue as to which of the minima is a global minimum. Searching the list
of minima for the global minimum makes the second step of finding �2f(xm,
ym) redundant. Instead, f(xm, ym) is evaluated at all the extrema; then the list
of extrema is searched for the global minimum. This approach is mathemati-
cally elegant compared to the exhaustive or random searches. It quickly finds
a single minimum but requires a search scheme to find the global minimum.
Continuous functions with analytical derivatives are necessary (unless deriv-
atives are taken numerically, which results in even more function evaluations
plus a loss of accuracy). If there are too many variables, then it is difficult to
find all the extrema. The gradient of the cost function serves as the com-
pass heading pointing to the steepest downhill path. It works well when the
minimum is nearby, but cannot deal well with cliffs or boundaries, where the
gradient can’t be calculated.

In the eighteenth century, Lagrange introduced a technique for incorpo-
rating the equality constraints into the cost function. The method, now known
as Lagrange multipliers, finds the extrema of a function f(x, y, . . .) with con-
straints gm(x, y, . . .) = 0, by finding the extrema of the new function F(x, y,
. . . , k1, k2, . . .) = f(x, y, . . .) + SM

m=1kmgm(x, y, . . .) (Borowski and Borwein, 1991).
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Then, when gradients are taken in terms of the new variables km, the con-
straints are automatically satisfied.

As an example of this technique, consider equation (1.1) with the constraint
x + y = 0. The constraints are added to the cost function to produce the new
cost function

(1.6)

Taking the gradient of this function of three variables yields

(1.7)

Subtracting the second equation from the first and employing ym = -xm from
the third equation gives

(1.8)

where (xm, -xm) are the minima of equation (1.6). The solution is once again
a family of lines crossing the domain.

The many disadvantages to the calculus approach make it an unlikely can-
didate to solve most optimization problems encountered in the real world.
Even though it is impractical, most numerical approaches are based on it. Typ-
ically an algorithm starts at some random point in the search space, calculates
a gradient, and then heads downhill to the bottom. These numerical methods
head downhill fast; however, they often find the wrong minimum (a local
minimum rather than the global minimum) and don’t work well with discrete
variables. Gravity helps us find the downhill direction when hiking, but we will
still most likely end up in a local valley in the complex terrain.

Calculus-based methods were the bag of tricks for optimization theory until
von Neumann developed the minimax theorem in game theory (Thompson,
1992). Games require an optimum move strategy to guarantee winning. That
same thought process forms the basis for more sophisticated optimization
techniques. In addition techniques were needed to find the minimum of cost
functions having no analytical gradients. Shortly before and during World War
II, Kantorovich, von Neumann, and Leontief solved linear problems in the
fields of transportation, game theory, and input-output models (Anderson,
1992). Linear programming concerns the minimization of a linear function of
many variables subject to constraints that are linear equations and equalities.
In 1947 Dantzig introduced the simplex method, which has been the work-
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horse for solving linear programming problems (Williams, 1993). This method
has been widely implemented in computer codes since the mid-1960s.

Another category of methods is based on integer programming, an exten-
sion of linear programming in which some of the variables can only take
integer values (Williams, 1993). Nonlinear techniques were also under inves-
tigation during World War II. Karush extended Lagrange multipliers to con-
straints defined by equalities and inequalities, so a much larger category of
problems could be solved. Kuhn and Tucker improved and popularized this
technique in 1951 (Pierre, 1992). In the 1950s Newton’s method and the
method of steepest descent were commonly used.

1.2.3 Nelder-Mead Downhill Simplex Method

The development of computers spurred a flurry of activity in the 1960s. In 1965
Nelder and Mead introduced the downhill simplex method (Nelder and Mead,
1965), which doesn’t require the calculation of derivatives. A simplex is the
most elementary geometrical figure that can be formed in dimension N and
has N + 1 sides (e.g., a triangle in two-dimensional space). The downhill
simplex method starts at N + 1 points that form the initial simplex. Only one
point of the simplex, P0, is specified by the user. The other N points are found
by

(1.9)

where en are N unit vectors and cs is a scaling constant.The goal of this method
is to move the simplex until it surrounds the minimum, and then to contract
the simplex around the minimum until it is within an acceptable error. The
steps used to trap the local minimum inside a small simplex are as follows:

1. Creation of the initial triangle. Three vertices start the algorithm:
A = (x1,y1), B = (x2,y2), and C = (x3,y3) as shown in Figure 1.5.

2. Reflection. A new point, D = (x4,y4), is found as a reflection of the lowest
minimum (in this case A) through the midpoint of the line connecting
the other two points (B and C). As shown in Figure 1.5, D is found by

(1.10)

3. Expansion. If the cost of D is smaller than that at A, then the move was
in the right direction and another step is made in that same direction as
shown in Figure 1.5. The formula is given by

(1.11)E
B C

A
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-
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4. Contraction. If the new point, D, has the same cost as point A, then two
new points are found

(1.12)

The smallest cost of F and G is kept, thus contracting the simplex as
shown in Figure 1.5.

5. Shrinkage. If neither F nor G have smaller costs than A, then the side
connecting A and C must move toward B in order to shrink the simplex.
The new vertices are given by

(1.13)

Each iteration generates a new vertex for the simplex. If this new point is
better than at least one of the existing vertices, it replaces the worst vertex.
This way the diameter of the simplex gets smaller and the algorithm stops
when the diameter reaches a specified tolerance. This algorithm is not known
for its speed, but it has a certain robustness that makes it attractive. Figures
1.6 and 1.7 demonstrate the Nelder-Mead algorithm in action on a bowl-
shaped surface. Note how the triangle gradually flops down the hill until it 
surrounds the bottom. The next step would be to shrink itself around the
minimum.

Since the Nelder-Mead algorithm gets stuck in local minima, it can be 
combined with the random search algorithm to find the minimum to 
(1.1) subject to (1.2). Assuming that there is no prior knowledge of the 
cost surface, a random first guess is as good as any place to start. How close
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Figure 1.5 Manipulation of the basic simplex, in the case of two dimensions, a trian-
gle in an effort to find the minimum.
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Figure 1.6 Contour plot of the movement of the simplex down hill to surround the
minimum.

Figure 1.7 Mesh plot of the movement of the simplex down hill to surround the
minimum.



does this guess have to be to the true minimum before the algorithm can 
find it? Some simple experimentation helps us arrive at this answer. The 
first two columns in Table 1.1 show twelve random starting values. The 
ending values and the final costs found by the Nelder-Mead algorithm are
found in the next three columns. None of the trials arrived at the global
minimum.

Box (1965) extended the simplex method and called it the complex method,
which stands for constrained simplex method. This approach allows the addi-
tion of inequality constraints, uses up to 2N vertices, and expands the polyhe-
dron at each normal reflection.

1.2.4 Optimization Based on Line Minimization

The largest category of optimization methods fall under the general title of
successive line minimization methods. An algorithm begins at some random
point on the cost surface, chooses a direction to move, then moves in that direc-
tion until the cost function begins to increase. Next the procedure is repeated
in another direction. Devising a sensible direction to move is critical to algo-
rithm convergence and has spawned a variety of approaches.

A very simple approach to line minimization is the coordinate search
method (Schwefel, 1995). It starts at an arbitrary point on the cost surface,
then does a line minimization along the axis of one of the variables. Next it
selects another variable and does another line minimization along that axis.
This process continues until a line minimization is done along each of the vari-
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TABLE 1.1 Comparison of Nelder-Meade and BFGS Algorithms

Nelder-Mead BFGS

Starting Point Ending Point Ending Point
x y x y cost x y cost

8.9932 3.7830 9.0390 5.5427 -15.1079 9.0390 2.4567 -11.6835
3.4995 8.9932 5.9011 2.4566 -8.5437 5.9011 2.4566 -8.5437
0.4985 7.3803 1.2283 8.6682 -10.7228 0.0000 8.6682 -9.5192
8.4066 5.9238 7.4696 5.5428 -13.5379 9.0390 5.5428 -15.1079
0.8113 6.3148 1.2283 5.5427 -7.2760 0.0000 5.5428 -6.0724
6.8915 1.8475 7.4696 2.4566 -10.1134 7.4696 2.4566 -10.1134
7.3021 9.5406 5.9011 8.6682 -15.4150 7.4696 8.6682 -16.9847
5.6989 8.2893 5.9011 8.6682 -15.4150 5.9011 8.6682 -16.9847
6.3245 3.2649 5.9011 2.4566 -8.5437 5.9011 2.4566 -8.5437
5.6989 4.6725 5.9011 5.5428 -11.9682 5.9011 5.5428 -11.9682
4.0958 0.3226 4.3341 0.0000 -4.3269 4.3341 0.0000 -4.3269
4.2815 8.2111 4.3341 8.6622 -13.8461 4.3341 8.6622 -13.8461

Average -11.2347 -11.1412
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Figure 1.8 Possible path that the coordinate search method might take on a quadratic
cost surface.

start
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Figure 1.9 Possible path that the Rosenbrock method might take on a quadratic cost
surface.

ables.Then the algorithm cycles through the variables until an acceptable solu-
tion is found. Figure 1.8 models a possible path the algorithm might take in a
quadratic cost surface. In general, this method is slow.

Rosenbrock (1960) developed a method that does not limit search direc-
tions to be parallel to the variable axes. The first iteration of the Rosenbrock
method uses coordinate search along each variable to find the first improved
point (see Figure 1.9). The coordinate axes are then rotated until the first new
coordinate axis points from the starting location to the first point. Gram-
Schmidt orthogonalization finds the directions of the other new coordinate
axes based on the first new coordinate axis. A coordinate search is then per-
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Figure 1.10 Flowchart for a typical line search algorithm.

formed along each new coordinate axis. As before, this process iterates until
an acceptable solution is found.

A line search finds the optimum in one direction or dimension. For an n-
dimensional objective function, the line search repeats for at least n iterations
until the optimum is found. A flowchart of successive line search optimization
appears in Figure 1.10. All the algorithms in this category differ in how the
search direction at step n is found. For detailed information on the 
three methods described here, consult Luenberger (1984) and Press et al.
(1992).

The steepest descent algorithm originated with Cauchy in 1847 and has
been extremely popular. It starts at an arbitrary point on the cost surface and
minimizes along the direction of the gradient. The simple formula for the 
(n + 1)th iteration is given by

(1.14)

where gn is a nonnegative scalar that minimizes the function in the direction
of the gradient. By definition, the new gradient formed at each iteration 
is orthogonal to the previous gradient. If the valley is narrow (ratio of
maximum to minimum eigenvalue large), then this algorithm bounces 
from side to side for many iterations before reaching the bottom. Figure 1.11
shows a possible path of the steepest descent algorithm. Note that the path is
orthogonal to the contours and any path is orthogonal to the previous and
next path.

The method of steepest descent is not normally used anymore, because
more efficient techniques have been developed. Most of these techniques
involve some form of Newton’s method. Newton’s method is based on a mul-
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tidimensional Taylor series expansion of the function about the point xk

given by

(1.15)

where

xn = point about which Taylor series is expanded
x = point near xn

xT = transpose of vector (in this case row vector becomes column vector)
H = Hessian matrix with elements given by hmn = ∂2f/∂xm∂xn

Taking the gradient of the first two terms of (1.15) and setting it equal to zero
yields

(1.16)

Starting with a guess x0, the next point, xn+1, can be found from the previous
point, xn, by

(1.17)

Rarely is the Hessian matrix known. A myriad of algorithms have spawned
around this formulation. In general, these techniques are formulated as
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Figure 1.11 Possible path that the steepest descent algorithm might take on a qua-
dratic cost surface.



(1.18)

where

an = step size at iteration n
An= approximation to the Hessian matrix at iteration n

Note that when An = I, the identity matrix (1.18) becomes the method of steep-
est descent, and when An = H-1, (1.18) becomes Newton’s method.

Two excellent quasi-Newton techniques that construct a sequence of
approximations to the Hessian, such that

(1.19)

The first approach is called the Davidon-Fletcher-Powell (DFP) algorithm
(Powell, 1964). Powell developed a method that finds a set of line minimiza-
tion directions that are linearly independent, mutually conjugate directions
(Powell, 1964). The direction assuring the current direction does not “spoil”
the minimization of the prior direction is the conjugate direction. The conju-
gate directions are chosen so that the change in the gradient of the cost func-
tion remains perpendicular to the previous direction. If the cost function is
quadratic, then the algorithm converges in Nvar iterations (see Figure 1.12). If
the cost function is not quadratic, then repeating the Nvar iterations several
times usually brings the algorithm closer to the minimum. The second algo-
rithm is named the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm,

lim
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Figure 1.12 Possible path that a conjugate directions algorithm might take on a qua-
dratic cost surface.



discovered by its four namesakes independently in the mid-1960s (Broyden,
1965; Fletcher, 1963; Goldfarb, 1968; Shanno, 1970). Both approaches find a
way to approximate this matrix and employ it in determining the appropriate
directions of movement. This algorithm is “quasi-Newton” in that it is equiv-
alent to Newton’s method for prescribing the next best point to use for the
iteration, yet it doesn’t use an exact Hessian matrix. The BFGS algorithm is
robust and quickly converges, but it requires an extra step to approximate the
Hessian compared to the DFP algorithm. These algorithms have the advan-
tages of being fast and working with or without the gradient or Hessian. On
the other hand, they have the disadvantages of finding minimum close to the
starting point and having an approximation to the Hessian matrix that is close
to singular.

Quadratic programming assumes that the cost function is quadratic 
(variables are squared) and the constraints are linear. This technique is based
on Lagrange multipliers and requires derivatives or approximations to 
derivatives. One powerful method known as recursive quadratic programming
solves the quadratic programming problem at each iteration to find the 
direction of the next step (Luenberger, 1984). The approach of these 
methods is similar to using very refined surveying tools, which unfortunately
still does not guarantee that the hiker will find the lowest point in 
the park.

1.3 NATURAL OPTIMIZATION METHODS

The methods already discussed take the same basic approach of heading
downhill from an arbitrary starting point. They differ in deciding in which
direction to move and how far to move. Successive improvements increase the
speed of the downhill algorithms but don’t add to the algorithm’s ability to
find a global minimum instead of a local minimum.

All hope is not lost! Some outstanding algorithms have surfaced in recent
times. Some of these methods include the genetic algorithm (Holland, 1975),
simulated annealing (Kirkpatrick et al., 1983), particle swarm optimization
(Parsopoulos and Vrahatis, 2002), ant colony optimization (Dorigo and Maria,
1997), and evolutionary algorithms (Schwefel, 1995). These methods generate
new points in the search space by applying operators to current points and
statistically moving toward more optimal places in the search space. They rely
on an intelligent search of a large but finite solution space using statistical
methods. The algorithms do not require taking cost function derivatives 
and can thus deal with discrete variables and noncontinuous cost functions.
They represent processes in nature that are remarkably successful at optimiz-
ing natural phenomena. A selection of these algorithms is presented in
Chapter 7.
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1.4 BIOLOGICAL OPTIMIZATION: NATURAL SELECTION

This section introduces the current scientific understanding of the natural
selection process with the purpose of gaining an insight into the construction,
application, and terminology of genetic algorithms. Natural selection is dis-
cussed in many texts and treatises. Much of the information summarized here
is from Curtis (1975) and Grant (1985).

Upon observing the natural world, we can make several generalizations 
that lead to our view of its origins and workings. First, there is a tremendous
diversity of organisms. Second, the degree of complexity in the organisms is
striking. Third, many of the features of these organisms have an apparent use-
fulness. Why is this so? How did they come into being?

Imagine the organisms of today’s world as being the results of many itera-
tions in a grand optimization algorithm. The cost function measures surviv-
ability, which we wish to maximize. Thus the characteristics of the organisms
of the natural world fit into this topological landscape (Grant, 1985). The level
of adaptation, the fitness, denotes the elevation of the landscape. The highest
points correspond to the most-fit conditions. The environment, as well as how
the different species interact, provides the constraints. The process of evolu-
tion is the grand algorithm that selects which characteristics produce a species
of organism fit for survival.The peaks of the landscape are populated by living
organisms. Some peaks are broad and hold a wide range of characteristics
encompassing many organisms, while other peaks are very narrow and allow
only very specific characteristics. This analogy can be extended to include
saddles between peaks as separating different species. If we take a very
parochial view and assume that intelligence and ability to alter the environ-
ment are the most important aspects of survivability, we can imagine the global
maximum peak at this instance in biological time to contain humankind.

To begin to understand the way that this natural landscape was populated
involves studying the two components of natural selection: genetics and evo-
lution. Modern biologists subscribe to what is known as the synthetic theory
of natural selection—a synthesis of genetics with evolution. There are two
main divisions of scale in this synthetic evolutionary theory: macroevolution,
which involves the process of division of the organisms into major groups, and
microevolution, which deals with the process within specific populations. We
will deal with microevolution here and consider macroevolution to be beyond
our scope.

First, we need a bit of background on heredity at the cellular level. A gene
is the basic unit of heredity. An organism’s genes are carried on one of a pair
of chromosomes in the form of deoxyribonucleic acid (DNA). The DNA is in
the form of a double helix and carries a symbolic system of base-pair
sequences that determine the sequence of enzymes and other proteins in an
organism. This sequence does not vary and is known as the genetic code of the
organism. Each cell of the organism contains the same number of chromo-
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somes. For instance, the number of chromosomes per body cell is 6 for mos-
quitoes, 26 for frogs, 46 for humans, and 94 for goldfish. Genes often occur with
two functional forms, each representing a different characteristic. Each of
these forms is known as an allele. For instance, a human may carry one allele
for brown eyes and another for blue eyes. The combination of alleles on the
chromosomes determines the traits of the individual. Often one allele is dom-
inant and the other recessive, so that the dominant allele is what is manifested
in the organism, although the recessive one may still be passed on to its off-
spring. If the allele for brown eyes is dominant, the organism will have brown
eyes. However, it can still pass the blue allele to its offspring. If the second
allele from the other parent is also for blue eyes, the child will be blue-eyed.

The study of genetics began with the experiments of Gregor Mendel. Born
in 1822, Mendel attended the University of Vienna, where he studied both
biology and mathematics. After failing his exams, he became a monk. It was
in the monastery garden where he performed his famous pea plant experi-
ments. Mendel revolutionized experimentation by applying mathematics and
statistics to analyzing and predicting his results. By his hypothesizing and
careful planning of experiments, he was able to understand the basic concepts
of genetic inheritance for the first time, publishing his results in 1865. As with
many brilliant discoveries, his findings were not appreciated in his own time.

Mendel’s pea plant experiments were instrumental in delineating how traits
are passed from one generation to another. One reason that Mendel’s exper-
iments were so successful is that pea plants are normally self-pollinating and
seldom cross-pollinate without intervention. The self-pollination is easily pre-
vented. Another reason that Mendel’s experiments worked was the fact that
he spent several years prior to the actual experimentation documenting the
inheritable traits and which ones were easily separable and bred pure. This
allowed him to crossbreed his plants and observe the characteristics of the off-
spring and of the next generation. By carefully observing the distribution of
traits, he was able to hypothesize his first law—the principle of segregation;
that is, that there must be factors that are inherited in pairs, one from each
parent. These factors are indeed the genes and their different realizations are
the alleles. When both alleles of a gene pair are the same, they are homozy-
gous. When they are different, they are heterozygous. The brown-blue allele
for eye color of a parent was heterozygous while the blue-blue combination
of the offspring is homozygous. The trait actually observed is the phenotype,
but the actual combination of alleles is the genotype. Although the parent
organism had a brown-blue eye color phenotype, its genotype is for brown
eyes (the dominant form). The genotype must be inferred from the phenotype
percentages of the succeeding generation as well as the parent itself. Since the
offspring had blue eyes, we can infer that each parent had a blue allele to pass
along, even though the phenotype of each parent was brown eyes. Therefore,
since the offspring was homozygous, carrying two alleles for blue eyes, both
parents must be heterozygous, having one brown and one blue allele. Mendel’s
second law is the principle of independent assortment. This principle states
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that the inheritance of the allele for one trait is independent of that 
for another. The eye color is irrelevant when determining the size of the 
individual.

To understand how genes combine into phenotypes, it is helpful to under-
stand some basics of cell division. Reproduction in very simple, single-celled
organisms occurs by cell division, known as mitosis. During the phases of
mitosis, the chromosome material is exactly copied and passed onto the off-
spring. In such simple organisms the daughter cells are identical to the parent.
There is little opportunity for evolution of such organisms. Unless a mutation
occurs, the species propagates unchanged. Higher organisms have developed
a more efficient method of passing on traits to their offspring—sexual repro-
duction. The process of cell division that occurs then is called meiosis. The
gamete, or reproductive cell, has half the number of chromosomes as the other
body cells. Thus the gametes cells are called haploid, while the body cells are
diploid. Only these diploid body cells contain the full genetic code.The diploid
number of chromosomes is reduced by half to form the haploid number for
the gametes. In preparation for meiosis, the gamete cells are duplicated. Then
the gamete cells from the mother join with those from the father (this process
is not discussed here). They arrange themselves in homologous pairs; that is,
each chromosome matches with one of the same length and shape. As they
match up, they join at the kinetochore, a random point on this matched chro-
mosome pair (or actually tetrad in most cases).As meiosis progresses, the kine-
tochores divide so that a left portion of the mother chromosome is conjoined
with the right portion of the father, and visa versa for the other portions. This
process is known as crossing over.The resulting cell has the full diploid number
of chromosomes. Through this crossing over, the genetic material of the
mother and father has been combined in a manner to produce a unique indi-
vidual offspring. This process allows changes to occur in the species.

Now we turn to discussing the second component of natural selection—evo-
lution—and one of its first proponents, Charles Darwin. Darwin refined his
ideas during his voyage as naturalist on the Beagle, especially during his visits
to the Galapagos Islands. Darwin’s theory of evolution was based on four
primary premises. First, like begets like; equivalently, an offspring has many of
the characteristics of its parents. This premise implies that the population is
stable. Second, there are variations in characteristics between individuals that
can be passed from one generation to the next. The third premise is that only
a small percentage of the offspring produced survive to adulthood. Finally,
which of the offspring survive depends on their inherited characteristics.These
premises combine to produce the theory of natural selection. In modern evo-
lutionary theory an understanding of genetics adds impetus to the explanation
of the stages of natural selection.

A group of interbreeding individuals is called a population. Under static
conditions the characteristics of the population are defined by the Hardy-
Weinberg Law. This principle states that the frequency of occurrence of the
alleles will stay the same within an inbreeding population if there are no per-
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turbations. Thus, although the individuals show great variety, the statistics of
the population remain the same. However, we know that few populations are
static for very long. When the population is no longer static, the proportion of
allele frequencies is no longer constant between generations and evolution
occurs. This dynamic process requires an external forcing. The forcing may be
grouped into four specific types. (1) Mutations may occur; that is, a random
change occurs in the characteristics of a gene.This change may be passed along
to the offspring. Mutations may be spontaneous or due to external factors such
as exposure to environmental factors. (2) Gene flow may result from intro-
duction of new organisms into the breeding population. (3) Genetic drift may
occur solely due to chance. In small populations certain alleles may sometimes
be eliminated in the random combinations. (4) Natural selection operates to
choose the most fit individuals for further reproduction. In this process certain
alleles may produce an individual that is more prepared to deal with its envi-
ronment. For instance, fleeter animals may be better at catching prey or
running from predators, thus being more likely to survive to breed. Therefore
certain characteristics are selected into the breeding pool.

Thus we see that these ideas return to natural selection.The important com-
ponents have been how the genes combine and cross over to produce new
individuals with combinations of traits and how the dynamics of a large pop-
ulation interact to select for certain traits. These factors may move this off-
spring either up toward a peak or down into the valley. If it goes too far into
the valley, it may not survive to mate—better adapted ones will. After a long
period of time the pool of organisms becomes well adapted to its environment.
However, the environment is dynamic. The predators and prey, as well as
factors such as the weather and geological upheaval, are also constantly chang-
ing. These changes act to revise the optimization equation. That is what makes
life (and genetic algorithms) interesting.

1.5 THE GENETIC ALGORITHM

The genetic algorithm (GA) is an optimization and search technique based 
on the principles of genetics and natural selection. A GA allows a population
composed of many individuals to evolve under specified selection rules to 
a state that maximizes the “fitness” (i.e., minimizes the cost function).
The method was developed by John Holland (1975) over the course of 
the 1960s and 1970s and finally popularized by one of his students, David 
Goldberg, who was able to solve a difficult problem involving the control of 
gas-pipeline transmission for his dissertation (Goldberg, 1989). Holland’s orig-
inal work was summarized in his book. He was the first to try to develop 
a theoretical basis for GAs through his schema theorem. The work of De 
Jong (1975) showed the usefulness of the GA for function optimization and
made the first concerted effort to find optimized GA parameters. Goldberg
has probably contributed the most fuel to the GA fire with his successful appli-
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cations and excellent book (1989). Since then, many versions of evolutionary
programming have been tried with varying degrees of success.

Some of the advantages of a GA include that it

• Optimizes with continuous or discrete variables,
• Doesn’t require derivative information,
• Simultaneously searches from a wide sampling of the cost surface,
• Deals with a large number of variables,
• Is well suited for parallel computers,
• Optimizes variables with extremely complex cost surfaces (they can jump

out of a local minimum),
• Provides a list of optimum variables, not just a single solution,
• May encode the variables so that the optimization is done with the en-

coded variables, and
• Works with numerically generated data, experimental data, or analytical

functions.

These advantages are intriguing and produce stunning results when traditional
optimization approaches fail miserably.

Of course, the GA is not the best way to solve every problem. For instance,
the traditional methods have been tuned to quickly find the solution of a well-
behaved convex analytical function of only a few variables. For such cases the
calculus-based methods outperform the GA, quickly finding the minimum
while the GA is still analyzing the costs of the initial population. For these
problems the optimizer should use the experience of the past and employ
these quick methods. However, many realistic problems do not fall into this
category. In addition, for problems that are not overly difficult, other methods
may find the solution faster than the GA. The large population of solutions
that gives the GA its power is also its bane when it comes to speed on a serial
computer—the cost function of each of those solutions must be evaluated.
However, if a parallel computer is available, each processor can evaluate a 
separate function at the same time. Thus the GA is optimally suited for such
parallel computations.

This book shows how to use a GA to optimize problems. Chapter 2 
introduces the binary form while using the algorithm to find the highest point
in Rocky Mountain National Park. Chapter 3 describes another version of 
the algorithm that employs continuous variables. We demonstrate this 
method with a GA solution to equation (1.1) subject to constraints (1.2).
The remainder of the book presents refinements to the algorithm by 
solving more problems, winding its way from easier, less technical problems
into more difficult problems that cannot be solved by other methods. Our 
goal is to give specific ways to deal with certain types of problems that 
may be typical of the ones faced by scientists and engineers on a day-to-day
basis.
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EXERCISES

Use the following local optimizers:

a. Nelder-Mead downhill simplex
b. BFGS
c. DFP
d. Steepest descent
e. Random search

1. Find the minimum of _____ (one of the functions in Appendix I) using
_____ (one of the local optimizers).

2. Try _____ different random starting values to find the minimum. What do
you observe?

3. Combine 1 and 2, and find the minimum 25 times using random starting
points. How often is the minimum found?

4. Compare the following algorithms:_____

5. Since local optimizers often decrease the step size when approaching the
minimum, running the algorithm again after it has found a minimum
increases the odds of getting a better solution. Repeat 3 in such a way that
the solution is used as a starting point by the algorithm on a second run.
Does this help? With which functions? Why?

6. Some of the MATLAB optimization routines give you a choice of provid-
ing the exact derivatives. Do these algorithms converge better with the
exact derivatives or approximate numerical derivatives?

7. Find the minimum of f = u2 + 2v2 + w2 + x2 subject to u + 3v - w + x = 2 and
2u - v + w + 2x = 4 using Lagrange multipliers. Assume no constraints.
(Answer: u = 67/69, v = 6/69, w = 14/69, x = 67/69 with k1 = -26/69,
k2 = -54/69.)

8. Many problems have constraints on the variables. Using a transformation
of variables, convert (1.1) and (1.2) into an unconstrained optimization
problem, and try one of the local optimizers. Does the transformation used
affect the speed of convergence?

EXERCISES 25



CHAPTER 2

The Binary Genetic Algorithm

27

2.1 GENETIC ALGORITHMS: NATURAL SELECTION 
ON A COMPUTER

If the previous chapter whet your appetite for something better than the tra-
ditional optimization methods, this and the next chapter give step-by-step pro-
cedures for implementing two flavors of a GA. Both algorithms follow the
same menu of modeling genetic recombination and natural selection. One rep-
resents variables as an encoded binary string and works with the binary strings
to minimize the cost, while the other works with the continuous variables
themselves to minimize the cost. Since GAs originated with a binary repre-
sentation of the variables, the binary method is presented first.

Figure 2.1 shows the analogy between biological evolution and a binary
GA. Both start with an initial population of random members. Each row of
binary numbers represents selected characteristics of one of the dogs in the
population. Traits associated with loud barking are encoded in the binary
sequence associated with these dogs. If we are trying to breed the dog with
the loudest bark, then only a few of the loudest, (in this case, four loudest)
barking dogs are kept for breeding. There must be some way of determining
the loudest barkers—the dogs may audition while the volume of their bark is
measured. Dogs with loud barks receive low costs. From this breeding popu-
lation of loud barkers, two are randomly selected to create two new puppies.
The puppies have a high probability of being loud barkers because both their
parents have genes that make them loud barkers. The new binary sequences
of the puppies contain portions of the binary sequences of both parents. These
new puppies replace two discarded dogs that didn’t bark loud enough. Enough
puppies are generated to bring the population back to its original size. Iterat-
ing on this process leads to a dog with a very loud bark. This natural opti-
mization process can be applied to inanimate objects as well.

Practical Genetic Algorithms, Second Edition, by Randy L. Haupt and Sue Ellen Haupt.
ISBN 0-471-45565-2 Copyright © 2004 John Wiley & Sons, Inc.
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2.2 COMPONENTS OF A BINARY GENETIC ALGORITHM

The GA begins, like any other optimization algorithm, by defining the opti-
mization variables, the cost function, and the cost. It ends like other opti-
mization algorithms too, by testing for convergence. In between, however, this
algorithm is quite different. A path through the components of the GA is
shown as a flowchart in Figure 2.2. Each block in this “big picture” overview
is discussed in detail in this chapter.

In the previous chapter the cost function was a surface with peaks and
valleys when displayed in variable space, much like a topographic map. To find
a valley, an optimization algorithm searches for the minimum cost. To find a
peak, an optimization algorithm searches for the maximum cost. This analogy
leads to the example problem of finding the highest point in Rocky Mountain
National Park. A three-dimensional plot of a portion of the park (our search
space) is shown in Figure 2.3, and a crude topographical map (128 ¥ 128 points)
with some of the highlights is shown in Figure 2.4. Locating the top of Long’s
Peak (14,255 ft above sea level) is the goal. Three other interesting features 
in the area include Storm Peak (13,326 ft), Mount Lady Washington 
(13,281 ft), and Chasm Lake (11,800 ft). Since there are many peaks in the area
of interest, conventional optimization techniques have difficulty finding Long’s

Figure 2.1 Analogy between a numerical GA and biological genetics.
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Mating

Mutation

Convergence Check

done

Define cost function, cost, variables 
Select GA parameters

Generate initial population 

Decode chromosomes

Find cost for each chromosome

Select mates

Figure 2.2 Flowchart of a binary GA.

Figure 2.3 Three-dimensional view of the cost surface with a view of Long’s Peak.
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Figure 2.4 Contour plot or topographical map of the cost surface around Long’s Peak.

Peak unless the starting point is in the immediate vicinity of the peak. In fact
all of the methods requiring a gradient of the cost function won’t work well
with discrete data. The GA has no problem!

2.2.1 Selecting the Variables and the Cost Function

A cost function generates an output from a set of input variables (a chromo-
some). The cost function may be a mathematical function, an experiment, or
a game.The object is to modify the output in some desirable fashion by finding
the appropriate values for the input variables. We do this without thinking
when filling a bathtub with water. The cost is the difference between the
desired and actual temperatures of the water. The input variables are how
much the hot and cold spigots are turned. In this case the cost function is the
experimental result from sticking your hand in the water. So we see that deter-
mining an appropriate cost function and deciding which variables to use are
intimately related. The term fitness is extensively used to designate the output
of the objective function in the GA literature. Fitness implies a maximization
problem. Although fitness has a closer association with biology than the term
cost, we have adopted the term cost, since most of the optimization literature
deals with minimization, hence cost. They are equivalent.

The GA begins by defining a chromosome or an array of variable values to
be optimized. If the chromosome has Nvar variables (an Nvar-dimensional opti-
mization problem) given by p1, p2, . . . , , then the chromosome is written
as an Nvar element row vector.

(2.1)chromosome p p p pNvar= [ ]1 2 3, , , . . . ,

pNvar



For instance, searching for the maximum elevation on a topographical map
requires a cost function with input variables of longitude (x) and latitude (y)

(2.2)

where Nvar = 2. Each chromosome has a cost found by evaluating the cost func-
tion, f, at p1, p2, . . . , :

(2.3)

Since we are trying to find the peak in Rocky Mountain National Park, the
cost function is written as the negative of the elevation in order to put it into
the form of a minimization algorithm:

(2.4)

Often the cost function is quite complicated, as in maximizing the gas 
mileage of a car. The user must decide which variables of the problem are 
most important. Too many variables bog down the GA. Important variables 
for optimizing the gas mileage might include size of the car, size of the 
engine, and weight of the materials. Other variables, such as paint color and 
type of headlights, have little or no impact on the car gas mileage and 
should not be included. Sometimes the correct number and choice of 
variables comes from experience or trial optimization runs. Other times 
we have an analytical cost function. A cost function defined by

with all variables lying between 1
and 10 can be simplified to help the optimization algorithm. Since the w and
z terms are extremely small in the region of interest, they can be discarded for
most purposes.Thus the four-dimensional cost function is adequately modeled
with two variables in the region of interest.

Most optimization problems require constraints or variable bounds. Allow-
ing the weight of the car to go to zero or letting the car width be 10 meters
are impractical variable values. Unconstrained variables can take any value.
Constrained variables come in three brands. First, hard limits in the form of
>, <, ≥, and £ can be imposed on the variables. When a variable exceeds a
bound, then it is set equal to that bound. If x has limits of 0 £ x £ 10, and the
algorithm assigns x = 11, then x will be reassigned to the value of 10. Second,
variables can be transformed into new variables that inherently include the
constraints. If x has limits of 0 £ x £ 10, then x = 5sin y + 5 is a transformation
between the constrained variable x and the unconstrained variable y. Varying
y for any value is the same as varying x within its bounds. This type of trans-
formation changes a constrained optimization problem into an unconstrained
optimization problem in a smooth manner. Finally there may be a finite set of
variable values from which to choose, and all values lie within the region of

f w x y z x y z w, , ,( ) = + + +2 3 100000 9876

f x y elevation x y, ,( ) = - ( )at

cost f chromosome f p p pNvar= ( ) = ( )1 2, , ,. . . 

pNvar

chromosome x y= [ ],
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interest. Such problems come in the form of selecting parts from a limited
supply.

Dependent variables present special problems for optimization algorithms
because varying one variable also changes the value of the other variable. For
example, size and weight of the car are dependent. Increasing the size of the
car will most likely increase the weight as well (unless some other factor, such
as type of material, is also changed). Independent variables, like Fourier series
coefficients, do not interact with each other. If 10 coefficients are not enough
to represent a function, then more can be added without having to recalculate
the original 10.

In the GA literature, variable interaction is called epistasis (a biological
term for gene interaction). When there is little to no epistasis, minimum
seeking algorithms perform best. GAs shine when the epistasis is medium to
high, and pure random search algorithms are champions when epistasis is very
high (Figure 2.5).

2.2.2 Variable Encoding and Decoding

Since the variable values are represented in binary, there must be a way of
converting continuous values into binary, and visa versa. Quantization samples
a continuous range of values and categorizes the samples into nonoverlapping
subranges. Then a unique discrete value is assigned to each subrange. The dif-
ference between the actual function value and the quantization level is known

Figure 2.5 This graph of an epistasis thermometer shows that minimum seeking algo-
rithms work best for low epistasis, while random algorithms work best for very high
epistasis. GAs work best in a wide range of medium to high epistasis.
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as the quantization error. Figure 2.6 is an example of the quantization of a
Bessel function (J0 (x)) using 4 bits. Increasing the number of bits would reduce
the quantization error.

Quantization begins by sampling a function and placing the samples into
equal quantization levels (Figure 2.7). Any value falling within one of the
levels is set equal to the mid, high, or low value of that level. In general, setting
the value to the mid value of the quantization level is best, because the largest
error possible is half a level. Rounding the value to the low or high value of

Figure 2.6 A Bessel function and a 6-bit quantized version of the same function.

Figure 2.7 Four continuous parameter values are graphed with the quantization levels
shown. The corresponding gene or chromosome indicates the quantization level where
the parameter value falls. Each chromosome corresponds to a low, mid, or high value
in the quantization level. Normally the parameter is assigned the mid value of the quan-
tization level.
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the level allows a maximum error equal to the quantization level. The math-
ematical formulas for the binary encoding and decoding of the nth variable,
pn, are given as follows:

For encoding,

(2.5)

(2.6)

For decoding,

(2.7)

(2.8)

In each case

pnorm = normalized variable, 0 £ pnorm £ 1

plo = smallest variable value
phi = highest variable value
gene[m] = binary version of pn

round{·} = round to nearest integer
pquant = quantized version of pnorm

qn = quantized version of pn

The binary GA works with bits. The variable x has a value represented by a
string of bits that is Ngene long. If Ngene = 2 and x has limits defined by 1 £ x £ 4,

then a gene with 2 bits has = 4 possible values. Those values are the first
column of Table 2.1.The bits can represent a decimal integer, quantized values,
or qualitative values as shown in columns 2 through 6 of Table 2.1. The quan-
tized value of the gene or variable is mathematically found by multiplying the
vector containing the bits by a vector containing the quantization levels:

(2.9)

where

gene = [b1 b2 . . . ]
Ngene = number bits in a gene

bNgene

q gene Qn
T= ¥

2Ngene

q p p p pn quant hi lo lo= -( ) +

p gene mquant
m M

m

Ngene

= [ ] +- - +( )

=
Â 2 2 1

1

gene m p gene pnorm
m p

p

m

[ ] = - - [ ]Ï
Ì
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˝
˛

- -

=

-
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bn = binary bit = 1 or 0
Q = quantization vector = [2-1 2-2 . . . ]
QT = transpose of Q

The first quantized representation of x includes the upper and lower bounds
of x as shown in column 3 of Table 2.1. This approach has a maximum possi-
ble quantization error of 0.5. The second quantized representation of x does
not include the two bounds but has a maximum error of 0.375. Increasing the
number of bits decreases the quantization error. The binary representation
may correspond to a nonnumerical value, such as a color or opinion that has
been previously defined by the binary representation, as shown in the last two
columns of Table 2.1.

The GA works with the binary encodings,but the cost function often requires
continuous variables.Whenever the cost function is evaluated, the chromosome
must first be decoded using (2.8).An example of a binary encoded chromosome
that has Nvar variables, each encoded with Ngene = 10 bits, is

Substituting each gene in this chromosome into equation (2.8) yields an array
of the quantized version of the variables. This chromosome has a total of 
Nbits = Ngene ¥ Nvar = 10 ¥ Nvar bits.

As previously mentioned, the topographical map of Rocky Mountain
National Park has 128 ¥ 128 elevation points. If x and y are encoded in 
two genes, each with Ngene = 7 bits, then there are 27 possible values for x and
y. These values range from 40°15¢ £ y £ 40°16¢ and 105°37¢30≤ ≥ x ≥ 105°36¢.
The binary translations for the limits are shown in Table 2.2. The cost 
function translates the binary representation into a decimal value that repre-
sents the row and column in a matrix containing all the elevation values.
As an example, a chromosome may have the following Npop ¥ Nbits binary 
representation:

chromosome
gene gene geneNvar

= ◊ ◊ ◊
È

Î
Í
Í

˘

˚
˙
˙

11110010010011011111 0000101001
1 2

1 244 344 1 244 344 1 244 344

2Ngene

TABLE 2.1 Decoding a Gene

Binary Decimal First Second
Representation Number Quantized x Quantized x Color Opinion

00 0 1 1.375 Red Excellent
01 1 2 2.125 Green Good
10 2 3 2.875 Blue Average
11 3 4 3.625 Yellow Poor
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This chromosome translates into matrix coordinates of [99, 25] or longitude,
latitude coordinates of [105°36¢50≤, 40°15¢29.7≤]. During the optimization, the
actual values of the longitude and latitude do not need to be calculated.
Decoding is only necessary to interpret the results at the end.

2.2.3 The Population

The GA starts with a group of chromosomes known as the population. The
population has Npop chromosomes and is an Npop ¥ Nbits matrix filled with
random ones and zeros generated using

pop=round(rand(Npop, Nbits));

where the function (Npop, Nbits) generates a Npop ¥ Nbits matrix of uniform
random numbers between zero and one. The function round rounds the
numbers to the closest integer which in this case is either 0 or 1. Each row in
the pop matrix is a chromosome. The chromosomes correspond to discrete
values of longitude and latitude. Next the variables are passed to the cost func-
tion for evaluation. Table 2.3 shows an example of an initial population and
their costs for the Npop = 8 random chromosomes. The locations of the chro-
mosomes are shown on the topographical map in Figure 2.8.

2.2.4 Natural Selection

Survival of the fittest translates into discarding the chromosomes with the
highest cost (Figure 2.9). First, the Npop costs and associated chromosomes are
ranked from lowest cost to highest cost. Then, only the best are selected to
continue, while the rest are deleted. The selection rate, Xrate, is the fraction of
Npop that survives for the next step of mating. The number of chromosomes
that are kept each generation is

chromosome
x y

=
È

Î
Í
Í

˘

˚
˙
˙

110001100110011 24 34 1 24 34

TABLE 2.2 Binary Representations

Variable Binary Decimal Value

Latitude 0000000 1 40°15¢
Latitude 1111111 128 40°16¢
Longitude 0000000 1 105°36¢
Longitude 1111111 128 105°37¢30≤
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TABLE 2.3 Example Initial Population of 8
Random Chromosomes and Their Corresponding
Cost

Chromosome Cost

00101111000110 -12359
11100101100100 -11872
00110010001100 -13477
00101111001000 -12363
11001111111011 -11631
01000101111011 -12097
11101100000001 -12588
01001101110011 -11860

Figure 2.8 A contour map of the cost surface with the 8 initial population members
indicated by large dots.

[1011]
has a cost of 1

[0110]
has a cost of 8

NATURAL SELECTION

Figure 2.9 Individuals with the best traits survive. Unfit species in nature don’t
survive. Chromosomes with high costs in GAs are discarded.



(2.10)

Natural selection occurs each generation or iteration of the algorithm. Of the
Npop chromosomes in a generation, only the top Nkeep survive for mating, and
the bottom Npop - Nkeep are discarded to make room for the new offspring.

Deciding how many chromosomes to keep is somewhat arbitrary. Letting
only a few chromosomes survive to the next generation limits the available
genes in the offspring. Keeping too many chromosomes allows bad perform-
ers a chance to contribute their traits to the next generation. We often keep
50% (Xrate = 0.5) in the natural selection process.

In our example, Npop = 8. With a 50% selection rate, Nkeep = 4. The natural
selection results are shown in Table 2.4. Note that the chromosomes of Table
2.4 have first been sorted by cost. Then the four with the lowest cost survive
to the next generation and become potential parents.

Another approach to natural selection is called thresholding. In this
approach all chromosomes that have a cost lower than some threshold survive.
The threshold must allow some chromosomes to continue in order to have
parents to produce offspring. Otherwise, a whole new population must be gen-
erated to find some chromosomes that pass the test. At first, only a few chro-
mosomes may survive. In later generations, however, most of the chromosomes
will survive unless the threshold is changed. An attractive feature of this tech-
nique is that the population does not have to be sorted.

2.2.5 Selection

Now it’s time to play matchmaker. Two chromosomes are selected from the
mating pool of Nkeep chromosomes to produce two new offspring. Pairing takes
place in the mating population until Npop - Nkeep offspring are born to replace
the discarded chromosomes. Pairing chromosomes in a GA can be as inter-
esting and varied as pairing in an animal species. We’ll look at a variety of
selection methods, starting with the easiest.

1. Pairing from top to bottom. Start at the top of the list and pair the chro-
mosomes two at a time until the top Nkeep chromosomes are selected for
mating. Thus, the algorithm pairs odd rows with even rows. The mother

N X Nkeep rate pop=
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TABLE 2.4 Surviving Chromosomes after a 50%
Selection Rate

Chromosome Cost

00110010001100 -13477
11101100000001 -12588
00101111001000 -12363
00101111000110 -12359



has row numbers in the population matrix given by ma = 1, 3, 5, . . . and
the father has the row numbers pa = 2, 4, 6, . . . This approach doesn’t
model nature well but is very simple to program. It’s a good one for
beginners to try.

2. Random pairing. This approach uses a uniform random number gener-
ator to select chromosomes. The row numbers of the parents are found
using

ma=ceil(Nkeep*rand(1, Nkeep))
pa=ceil(Nkeep*rand(1, Nkeep))

where ceil rounds the value to the next highest integer.
3. Weighted random pairing. The probabilities assigned to the chromo-

somes in the mating pool are inversely proportional to their cost. A 
chromosome with the lowest cost has the greatest probability of mating,
while the chromosome with the highest cost has the lowest probability
of mating.A random number determines which chromosome is selected.
This type of weighting is often referred to as roulette wheel weighting.
There are two techniques: rank weighting and cost weighting.

a. Rank weighting. This approach is problem independent and finds the
probability from the rank, n, of the chromosome:

(2.11)

Table 2.5 shows the results for the Nkeep = 4 chromosomes of our
example. The cumulative probabilities listed in column 4 are used in
selecting the chromosome. A random number between zero and one
is generated. Starting at the top of the list, the first chromosome with
a cumulative probability that is greater than the random number is
selected for the mating pool. For instance, if the random number is r =
0.577, then 0.4 < r £ 0.7, so chromosome2 is selected. If a chromosome
is paired with itself, there are several alternatives. First, let it go. It just
means there are three of these chromosomes in the next generation.

P
N n
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n n
n
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n

Nkeep
=
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TABLE 2.5 Rank Weighting

n Chromosome Pn

1 00110010001100 0.4 0.4
2 11101100000001 0.3 0.7
3 00101111001000 0.2 0.9
4 00101111000110 0.1 1.0

Pi
i

n

=Â 1



Second, randomly pick another chromosome. The randomness in this
approach is more indicative of nature.Third,pick another chromosome
using the same weighting technique. Rank weighting is only slightly
more difficult to program than the pairing from top to bottom. Small
populations have a high probability of selecting the same 
chromosome. The probabilities only have to be calculated once. We
tend to use rank weighting because the probabilities don’t change each
generation.

b. Cost weighting.The probability of selection is calculated from the cost
of the chromosome rather than its rank in the population. A normal-
ized cost is calculated for each chromosome by subtracting the lowest
cost of the discarded chromosomes ( ) from the cost of all the
chromosomes in the mating pool:

(2.12)

Subtracting ensures all the costs are negative. Table 2.6 
lists the normalized costs assuming that = -12097. Pn is 
calculated from

(2.13)

This approach tends to weight the top chromosome more when there
is a large spread in the cost between the top and bottom chromosome.
On the other hand, it tends to weight the chromosomes evenly 
when all the chromosomes have approximately the same cost. The 
same issues apply as discussed above if a chromosome is selected 
to mate with itself. The probabilities must be recalculated each 
generation.

4. Tournament selection. Another approach that closely mimics mating
competition in nature is to randomly pick a small subset of chromosomes
(two or three) from the mating pool, and the chromosome with the
lowest cost in this subset becomes a parent. The tournament repeats for

P
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TABLE 2.6 Cost Weighting

n Chromosome Cn = cn - Pn

1 00110010001100 -13477 + 12097 = -1380 0.575 0.575
2 11101100000001 -12588 + 12097 = -491 0.205 0.780
3 00101111001000 -12363 + 12097 = -266 0.111 0.891
4 00101111000110 -12359 + 12097 = -262 0.109 1.000

Pi
i

n

=Â 1
cNkeep+1



every parent needed. Thresholding and tournament selection make a
nice pair, because the population never needs to be sorted. Tournament
selection works best for larger population sizes because sorting becomes
time-consuming for large populations.

Each of the parent selection schemes results in a different set of parents.
As such, the composition of the next generation is different for each selection
scheme. Roulette wheel and tournament selection are standard for most GAs.
It is very difficult to give advice on which weighting scheme works best. In this
example we follow the rank-weighting parent selection procedure.

Figure 2.10 shows the probability of selection for five selection 
methods. Uniform selection has a constant probability for each of the 
eight parents. Roulette wheel rank selection and tournament selection with
two chromosomes have about the same probabilities for the eight parents.
Selection pressure is the ratio of the probability that the most fit chromosome
is selected as a parent to the probability that the average chromosome is
selected. The selection pressure increases for roulette wheel rank squared
selection and tournament selection with three chromosomes, and their 
probability of selection for the eight parents are nearly the same. For more
information on these selection methods, see Bäck (1994) and Goldberg and
Deb (1991).

2.2.6 Mating

Mating is the creation of one or more offspring from the parents selected 
in the pairing process. The genetic makeup of the population is limited by 
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Figure 2.10 Graph of the probability of selection for 8 parents using five different
methods of selection.



the current members of the population. The most common form of mating
involves two parents that produce two offspring (see Figure 2.11). A crossover
point, or kinetochore, is randomly selected between the first and last bits of
the parents’ chromosomes. First, parent1 passes its binary code to the left of
that crossover point to offspring1. In a like manner, parent2 passes its binary
code to the left of the same crossover point to offspring2. Next, the binary code
to the right of the crossover point of parent1 goes to offspring2 and parent2

passes its code to offspring1. Consequently the offspring contain portions 
of the binary codes of both parents. The parents have produced a total of 
Npop - Nkeep offspring, so the chromosome population is now back to Npop.
Table 2.7 shows the pairing and mating process for the problem at hand. The
first set of parents is chromosomes 3 and 2 and has a crossover point between
bits 5 and 6. The second set of parents is chromosomes 3 and 4 and has a
crossover point between bits 10 and 11. This process is known as simple or
single-point crossover. More complicated versions of mating are discussed 
in Chapter 5.
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Figure 2.11 Two parents mate to produce two offspring. The offspring are placed into
the population.

TABLE 2.7 Pairing and Mating Process of Single-
Point Crossover

Chromosome Family Binary String

3 ma(1) 00101111001000
2 pa(1) 11101100000001
5 offspring1 00101100000001
6 offspring2 11101111001000

3 ma(2) 00101111001000
4 pa(2) 00101111000110
7 offspring3 00101111000110
8 offspring4 00101111001000



2.2.7 Mutations

Random mutations alter a certain percentage of the bits in the list of chro-
mosomes. Mutation is the second way a GA explores a cost surface. It can
introduce traits not in the original population and keeps the GA from con-
verging too fast before sampling the entire cost surface. A single point muta-
tion changes a 1 to a 0, and visa versa. Mutation points are randomly selected
from the Npop ¥ Nbits total number of bits in the population matrix. Increasing
the number of mutations increases the algorithm’s freedom to search outside
the current region of variable space. It also tends to distract the algorithm from
converging on a popular solution. Mutations do not occur on the final itera-
tion. Do we also allow mutations on the best solutions? Generally not. They
are designated as elite solutions destined to propagate unchanged. Such elitism
is very common in GAs. Why throw away a perfectly good answer?

For the Rocky Mountain National Park problem, we choose to mutate 20%
of the population (m = 0.20), except for the best chromosome. Thus a random
number generator creates seven pairs of random integers that correspond to
the rows and columns of the mutated bits. In this case the number of muta-
tions is given by

(2.14)

The computer code to find the rows and columns of the mutated bits is

nmut=ceil((Npop - 1)*Nbits m);
mrow=ceil(rand(1, m)*(Npop - 1))+1;
mcol=ceil(rand(1, m)*Nbits);
pop(mrow,mcol)=abs(pop(mrow,mcol)-1);

The following pairs were randomly selected:

mrow =[5 7 6 3 6 6 8 4 6 7 3 4 7 4 8 6 6 4 6 7]
mcol =[6 12 5 11 13 5 5 6 4 11 10 6 13 3 4 11 5 14 10 5]

The first random pair is (5, 6). Thus the bit in row 5 and column 6 of the pop-
ulation matrix is mutated from a 1 to a 0:

Mutations occur 19 more times. The mutated bits in Table 2.8 appear in italics.
Note that the first chromosome is not mutated due to elitism. If you look care-
fully, only 18 bits are mutated in Table 2.8 instead of 20. The reason is that the
row column pair (6, 5) was randomly selected three times. Thus the same bit
switched from a 1 to a 0 back to a 1 and finally to a 0. Locations of the chro-
mosomes at the end of the first generation are shown in Figure 2.12.

00101100000001 00101 00000001fi 0

# . .mutations N Npop bits= ¥ -( ) ¥ = ¥ ¥ =m 1 0 2 7 14 19 6 20�
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2.2.8 The Next Generation

After the mutations take place, the costs associated with the offspring and
mutated chromosomes are calculated (third column in Table 2.8). The process
described is iterated. For our example, the starting population for the next gen-
eration is shown in Table 2.9 after ranking. The bottom four chromosomes are
discarded and replaced by offspring from the top four parents. Another 20
random bits are selected for mutation from the bottom 7 chromosomes. The
population at the end of generation 2 is shown in Table 2.10 and Figure 2.13.
Table 2.11 is the ranked population at the beginning of generation 3. After
mating, mutation, and ranking, the population is shown in Table 2.12 and
Figure 2.14.
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TABLE 2.8 Mutating the Population

Population after Mating Population after Mutations New Cost

00110010001100 00110010001100 -13477
11101100000001 11101100000001 -12588
00101111001000 00101111010000 -12415
00101111000110 00001011000111 -13482
00101100000001 00101000000001 -13171
11101111001000 11110111010010 -12146
00101111000110 00100111001000 -12716
00101111001000 00110111001000 -12103

Figure 2.12 A contour map of the cost surface with the 8 members at the end of the
first generation.
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TABLE 2.9 New Ranked Population at the Start of
the Second Generation

Chromosome Cost

00001011000111 -13482
00110010001100 -13477
00101000000001 -13171
00100111001000 -12716
11101100000001 -12588
00101111010000 -12415
11110111010010 -12146
00110111001000 -12103

TABLE 2.10 Population after Crossover and Muta-
tion in the Second Generation

Chromosome Cost

00001011000111 -13482
00110000001000 -13332
01101001000001 -12923
01100111011000 -12128
10100111000001 -12961
10100010001000 -13237
00110100001110 -13564
00100010000001 -13246

Figure 2.13 A contour map of the cost surface with the 8 members at the end of the
second generation.
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TABLE 2.11 New Ranked Population at the Start of
the Third Generation

Chromosome Cost

00110100001110 -13564
00001011000111 -13482
00110000001000 -13332
00100010000001 -13246
10100010001000 -13237
10100111000001 -12961
01101001000001 -12923
01100111011000 -12128

TABLE 2.12 Ranking of Generation 2 from Least to
Most Cost

Chromosome Cost

00100010100001 -14199
00110100001110 -13564
00010000001110 -13542
00100000000001 -13275
00100011010000 -12840
00001111111111 -12739
11001011000111 -12614
01111111011111 -12192

Figure 2.14 A contour map of the cost surface with the 8 members at the end of the
third generation.



2.2.9 Convergence

The number of generations that evolve depends on whether an acceptable
solution is reached or a set number of iterations is exceeded. After a while all
the chromosomes and associated costs would become the same if it were not
for mutations. At this point the algorithm should be stopped.

Most GAs keep track of the population statistics in the form of population
mean and minimum cost. For our example, after three generations the global
minimum is found to be -14199. This minimum was found in

(2.15)

cost function evaluations or checking 29/(128 ¥ 128) ¥ 100 = 0.18% of the 
population. The final population is shown in Figure 2.14, where four of the
members are close to Long’s Peak. Figure 2.15 shows a plot of the algorithm
convergence in terms of the minimum and mean cost of each generation.
Long’s Peak is actually 14,255 ft above sea level, but the quantization error
(due to gridding) produced a maximum of 14,199.

2.3 A PARTING LOOK

We’ve managed to find the highest point in Rocky Mountain National Park
with a GA. This may have seemed like a trivial problem—the peak could 
have easily been found through an exhaustive search or by looking at a 
topographical map. True. But try using a conventional numerical optimization
routine to find the peak in these data. Such routines don’t work very well.

8 7 3 29
initial population max cost evaluations generations

per generation

{ { {+ ¥ =
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Figure 2.15 Graph of the mean cost and minimum cost for each generation.



Many can’t even be adapted to apply to this simple problem. We’ll present
some much more difficult problems in Chapters 4 and 6 where the utility of
the GA becomes even more apparent. For now you should be comfortable
with the workings of a simple GA.
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% This is a simple GA written in MATLAB
%  costfunction.m calculates a cost for each row or
%  chromosome in pop. This function must be provided
%  by the user.

N=200;     % number of bits in a chromosome
M=8;     % number of chromosomes must be even
last=50; % number of generations
sel=0.5; % selection rate
M2=2*ceil(sel*M/2);    % number of chromosomes kept
mutrate=0.01;           % mutation rate
nmuts=mutrate*N*(M-1); % number of mutations

% creates M random chromosomes with N bits
pop=round(rand(M,N)); % initial population

for ib=1:last

   cost=costfunction(pop);   % cost function   
   % ranks results and chromosomes
   [cost,ind]=sort(cost);
   pop=pop(ind(1:M2),:);
   [ib cost(1)]

   %mate
   cross=ceil((N-1)*rand(M2,1));

   % pairs chromosomes and performs crossover
   for ic=1:2:M2
    pop(ceil(M2*rand),1:cross)=pop(ic,1:cross);
    pop(ceil(M2*rand),cross+1:N)=pop(ic+1,cross+1:N);
    pop(ceil(M2*rand),1:cross)=pop(ic+1,1:cross);
    pop(ceil(M2*rand),cross+1:N)=pop(ic,cross+1:N);
   end

   %mutate
for ic=1:nmuts
   ix=ceil(M*rand);
   iy=ceil(N*rand);
   pop(ix,iy)=1-pop(ix,iy);
end %ic

end %ib

Figure 2.16 MATLAB code for a very simple GA.
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It’s very simple to program a GA. An extremely short GA in MATLAB is
shown in Figure 2.16. This GA uses pairing from top to bottom when select-
ing mates. The cost function must be provided by the user and converts the
binary strings into usable variable values.
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EXERCISES

1. Write a binary GA that uses:

a. Single-point crossover
b. Double-point crossover
c. Uniform crossover

2. Write a binary GA that uses:

a. Pairing parents from top to bottom
b. Random pairing
c. Pairing based on cost
d. Roulette wheel rank weighting
e. Tournament selection

3. Find the minimum of _____ (from Appendix I) using your binary GA.

4. Experiment with different population sizes and mutation rates.Which com-
bination seems to work best for you? Explain.



5. Compare your binary GA with the following local optimizers:

a. Nelder-Mead downhill simplex
b. BFGS
c. DFP
d. Steepest descent
e. Random search

6. Since the GA has many random components, it is important to average the
results over multiple runs. Write a program that will average the results of
your GA. Then do another one of the exercises and compare results.

7. Plot the convergence of the GA. Do a sensitivity analysis on parameters
such as m and Npop. Which GA parameters have the most effect on conver-
gence? A convergence plot could be: best minimum in the population
versus the number of function calls or the best minimum in the population
versus generation. Which method is better?
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CHAPTER 3

The Continuous Genetic Algorithm

51

Now that you are convinced (perhaps) that the binary GA solves many opti-
mization problems that stump traditional techniques, let’s look a bit closer at
the quantization limitation. What if you are attempting to solve a problem
where the values of the variables are continuous and you want to know them
to the full machine precision? In such a problem each variable requires many
bits to represent it. If the number of variables is large, the size of the chro-
mosome is also large. Of course, 1s and 0s are not the only way to represent
a variable. One could, in principle, use any representation conceivable for
encoding the variables. When the variables are naturally quantized, the binary
GA fits nicely. However, when the variables are continuous, it is more logical
to represent them by floating-point numbers. In addition, since the binary GA
has its precision limited by the binary representation of variables, using float-
ing point numbers instead easily allows representation to the machine preci-
sion. This continuous GA also has the advantage of requiring less storage than
the binary GA because a single floating-point number represents the variable
instead of Nbits integers.The continuous GA is inherently faster than the binary
GA, because the chromosomes do not have to be decoded prior to the eval-
uation of the cost function.

The purpose of this chapter is to introduce the continuous GA. Most
sources call this version of the GA a real-valued GA. We use the term con-
tinuous rather than real-valued to avoid confusion between real and complex
numbers. The development here closely parallels the last chapter. We primar-
ily dwell upon the differences in the two algorithms. The continuous example
introduced in Chapter 1 is our primary example problem. This allows the
reader to compare the continuous GA performance with the more traditional
optimization algorithms introduced in Chapter 1.

Practical Genetic Algorithms, Second Edition, by Randy L. Haupt and Sue Ellen Haupt.
ISBN 0-471-45565-2 Copyright © 2004 John Wiley & Sons, Inc.
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3.1 COMPONENTS OF A CONTINUOUS GENETIC ALGORITHM

The flowchart in Figure 3.1 provides a “big picture” overview of a continuous
GA. Each block is discussed in detail in this chapter. This GA is very similar
to the binary GA presented in the last chapter. The primary difference is the
fact that variables are no longer represented by bits of zeros and ones, but
instead by floating-point numbers over whatever range is deemed appropri-
ate. However, this simple fact adds some nuances to the application of the
technique that must be carefully considered. In particular, we will present dif-
ferent crossover and mutation operators.

3.1.1 The Example Variables and Cost Function

As we saw in the last chapter, the goal is to solve some optimization problem
where we search for an optimal (minimum) solution in terms of the variables
of the problem. Therefore we begin the process of fitting it to a GA by de-
fining a chromosome as an array of variable values to be optimized. If the
chromosome has Nvar variables (an N-dimensional optimization problem)
given by p1, p2, . . . , then the chromosome is written as an array with 
1 ¥ Nvar elements so that

pNvar

Figure 3.1 Flowchart of a continuous GA.

Mating

Mutation

Convergence Check

done

Define cost function, cost, variables 
Select GA parameters

Generate initial population

Find cost for each chromosome

Select mates



(3.1)

In this case, the variable values are represented as floating-point numbers.
Each chromosome has a cost found by evaluating the cost function f at the
variables p1, p2, . . . , .

(3.2)

Equations (3.1) and (3.2) along with applicable constraints constitute the
problem to be solved.

Our primary example in this chapter is the continuous function introduced
in Chapter 1. Consider the cost function

(3.3)

Since f is a function of x and y only, the clear choice for the variables is

(3.4)

with Nvar = 2. A contour map of the cost function appears as Figure 1.4. This
cost function is considerably more complex than the cost function in Chapter
2.We see that peaks and valleys dot the landscape of the cost function contour
plot. The plethora of local minima overwhelms traditional minimum-seeking
methods. Our goal is to find the global minimum value of f(x, y).

3.1.2 Variable Encoding, Precision, and Bounds

Here is where we begin to see the differences from the prior chapter. We no
longer need to consider how many bits are necessary to accurately represent
a value. Instead, x and y have continuous values that fall between the bounds
listed in equation (3.3).Although the values are continuous, a digital computer
represents numbers by a finite number of bits. When we refer to the continu-
ous GA, we mean the computer uses its internal precision and roundoff to
define the precision of the value. Now the algorithm is limited in precision to
the roundoff error of the computer.

Since the GA is a search technique, it must be limited to exploring a 
reasonable region of variable space. Sometimes this is done by imposing a 
constraint on the problem such as equation (3.3). If one does not know the
initial search region, there must be enough diversity in the initial population
to explore a reasonably sized variable space before focusing on the most
promising regions.

chromosome x y= [ ],

cost f x y x x y y

x y

= ( ) = ( ) + ( )
£ £ £ £

, sin . sin4 1 1 2

10 10Subject to the constraints: 0 and 0

cost f chromosome f p p pNvar= ( ) = ( )1 2, , . . . ,

pNvar

chromosome p p p pNvar= [ ]1 2 3, , , . . . ,
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3.1.3 Initial Population

To begin the GA, we define an initial population of Npop chromosomes. A
matrix represents the population with each row in the matrix being a 1 ¥ Nvar

array (chromosome) of continuous values. Given an initial population of Npop

chromosomes, the full matrix of Npop ¥ Nvar random values is generated by

pop = rand(Npop, Nvar)

All variables are normalized to have values between 0 and 1, the range of a
uniform random number generator. The values of a variable are “unnormal-
ized” in the cost function. If the range of values is between plo and phi, then
the unnormalized values are given by

(3.5)

where

plo = highest number in the variable range

phi = lowest number in the variable range
pnorm = normalized value of variable

In our example, the unnormalized values are just 10pnorm.
This society of chromosomes is not a democracy: the individual chromo-

somes are not all created equal. Each one’s worth is assessed by the cost func-
tion. So at this point, the chromosomes are passed to the cost function for
evaluation.

We begin solving (3.3) by filling a Npop ¥ Nvar matrix with uniform random
numbers between 0 and 10. Figure 3.2 shows the initial random population for
the Npop = 8 chromosomes. Population values are listed in Table 3.1. We see
widely scattered population members that well sample the values of the cost
function. None of the initial guesses are particularly close to the global
minimum.

3.1.4 Natural Selection

Now is the time to decide which chromosomes in the initial population are fit
enough to survive and possibly reproduce offspring in the next generation. As
done for the binary version of the algorithm, the Npop costs and associated
chromosomes are ranked from lowest cost to highest cost.The rest die off.This
process of natural selection must occur at each iteration of the algorithm to
allow the population of chromosomes to evolve over the generations to the
most fit members as defined by the cost function. Not all of the survivors are
deemed fit enough to mate. Of the Npop chromosomes in a given generation,
only the top Nkeep are kept for mating and the rest are discarded to make room
for the new offspring.

p p p p phi lo norm lo= -( ) +
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In our example the mean of the cost function for the population of 8 was
-0.3423 and the best cost was -9.8884. After discarding the bottom half the
mean of the population is -5.8138. The natural selection results represented
to five significant digits are shown in Table 3.2.

Figure 3.2 Contour plot of the cost function with the initial population (Npop = 8) indi-
cated by large dots.

TABLE 3.1 Example Initial Population of 8 Random
Chromosomes and Their Corresponding Cost

x y Cost

6.9745 0.8342 3.4766
0.30359 9.6828 5.5408
2.402 9.3359 -2.2528
0.18758 8.9371 -8.0108
2.6974 6.2647 -2.8957
5.613 0.1289 -2.4601
7.7246 5.5655 -9.8884
6.8537 9.8784 13.752

TABLE 3.2 Surviving Chromosomes after a 50%
Selection Rate

Number x y Cost

1 7.7246 5.5655 -9.8884
2 0.1876 8.9371 -8.0108
3 2.6974 6.2647 -2.8957
4 5.6130 0.12885 -2.4601
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3.1.5 Pairing

The Nkeep = 4 most-fit chromosomes form the mating pool. Two mothers and
fathers pair in some random fashion. Each pair produces two offspring that
contain traits from each parent. In addition the parents survive to be part of
the next generation. The more similar the two parents, the more likely are 
the offspring to carry the traits of the parents. We presented some basic
approaches to finding two mates in Chapter 2 and refer the reader back to
that presentation rather than repeating it.

The example presented here uses rank weighting with the probabilities
shown in Table 2.5. A random number generator produced the following two
pairs of random numbers: (0.6710, 0.8124) and (0.7930, 0.3039). Using these
random pairs and Table 2.5, the following chromosomes were randomly
selected to mate:

ma = [2 3]
pa = [3 1]

Thus chromosome2 mates with chromosome3, and so forth. The ma and pa
vectors contain the numbers corresponding to the chromosomes selected for
mating. Table 3.3 summarizes the results.

3.1.6 Mating

As for the binary algorithm, two parents are chosen, and the offspring are
some combination of these parents. Many different approaches have been
tried for crossing over in continuous GAs. Adewuya (1996) reviews some of
the methods. Several interesting methods are demonstrated by Michalewicz
(1994).

TABLE 3.3 Pairing and Mating Process of Single-
Point Crossover Chromosome Family Binary String Cost

2 ma(1) 0.18758 8.9371

3 pa(1) 2.6974 6.2647

5 offspring1 0.2558 6.2647

6 offspring2 2.6292 8.9371

3 ma(2) 2.6974 6.2647

1 pa(2) 7.7246 5.5655

7 offspring3 6.6676 5.5655

8 offspring4 3.7544 6.2647



The simplest methods choose one or more points in the chromosome to
mark as the crossover points. Then the variables between these points are
merely swapped between the two parents. For example purposes, consider the
two parents to be

(3.6)

Crossover points are randomly selected, and then the variables in between are
exchanged:

(3.7)

The extreme case is selecting Nvar points and randomly choosing which of the
two parents will contribute its variable at each position. Thus one goes down
the line of the chromosomes and, at each variable, randomly chooses whether
or not to swap information between the two parents. This method is called
uniform crossover:

(3.8)

The problem with these point crossover methods is that no new information
is introduced: each continuous value that was randomly initiated in the initial
population is propagated to the next generation, only in different combina-
tions. Although this strategy worked fine for binary representations, there is
now a continuum of values, and in this continuum we are merely interchang-
ing two data points. These approaches totally rely on mutation to introduce
new genetic material.

The blending methods remedy this problem by finding ways to combine
variable values from the two parents into new variable values in the offspring.
A single offspring variable value, pnew, comes from a combination of the two
corresponding offspring variable values (Radcliff, 1991)

(3.9)

where

b = random number on the interval [0, 1]
pmn = nth variable in the mother chromosome
pdn = nth variable in the father chromosome
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The same variable of the second offspring is merely the complement of the
first (i.e., replacing b by 1 - b). If b = 1, then pmn propagates in its entirety and
pdn dies. In contrast, if b = 0, then pdn propagates in its entirety and pmn dies.
When b = 0.5 (Davis, 1991), the result is an average of the variables of the two
parents.This method is demonstrated to work well on several interesting prob-
lems by Michalewicz (1994). Choosing which variables to blend is the next
issue. Sometimes, this linear combination process is done for all variables to
the right or to the left of some crossover point. Any number of points can be
chosen to blend, up to Nvar values where all variables are linear combinations
of those of the two parents. The variables can be blended by using the same
b for each variable or by choosing different b’s for each variable. These blend-
ing methods effectively combine the information from the two parents and
choose values of the variables between the values bracketed by the parents;
however, they do not allow introduction of values beyond the extremes
already represented in the population. To do this requires an extrapolating
method. The simplest of these methods is linear crossover (Wright, 1991). In
this case three offspring are generated from the two parents by

(3.10)

Any variable outside the bounds is discarded in favor of the other two. Then
the best two offspring are chosen to propagate. Of course, the factor 0.5 is 
not the only one that can be used in such a method. Heuristic crossover
(Michalewicz, 1991) is a variation where some random number, b, is chosen
on the interval [0, 1] and the variables of the offspring are defined by

(3.11)

Variations on this theme include choosing any number of variables to
modify and generating different b for each variable. This method also allows
generation of offspring outside of the values of the two parent variables. Some-
times values are generated outside of the allowed range. If this happens, the
offspring is discarded and the algorithm tries another b. The blend crossover
(BLX-a) method (Eshelman and Shaffer, 1993) begins by choosing some para-
meter a that determines the distance outside the bounds of the two parent
variables that the offspring variable may lie. This method allows new values
outside of the range of the parents without letting the algorithm stray too far.
Many codes combine the various methods to use the strengths of each. New
methods, such as quadratic crossover (Adewuya, 1996), do a numerical fit to
the fitness function. Three parents are necessary to perform a quadratic fit.

The algorithm used in this book is a combination of an extrapolation
method with a crossover method. We wanted to find a way to closely 
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mimic the advantages of the binary GA mating scheme. It begins by randomly
selecting a variable in the first pair of parents to be the crossover point

(3.12)

We’ll let

(3.13)

where the m and d subscripts discriminate between the mom and the dad
parent. Then the selected variables are combined to form new variables that
will appear in the children:

(3.14)

where b is also a random value between 0 and 1. The final step is to complete
the crossover with the rest of the chromosome as before:

(3.15)

If the first variable of the chromosomes is selected, then only the variables to
the right of the selected variable are swapped. If the last variable of the chro-
mosomes is selected, then only the variables to the left of the selected vari-
able are swapped. This method does not allow offspring variables outside the
bounds set by the parent unless b > 1.

For our example problem, the first set of parents are given by

A random number generator selects p1 as the location of the crossover. The
random number selected for b is b = 0.0272. The new offspring are given by
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Continuing this process once more with a b = 0.7898. The new offspring are
given by

3.1.7 Mutations

Here, as in the last chapter, we can sometimes find our method working too
well. If care is not taken, the GA can converge too quickly into one region of
the cost surface. If this area is in the region of the global minimum, that is
good. However, some functions, such as the one we are modeling, have many
local minima. If we do nothing to solve this tendency to converge quickly, we
could end up in a local rather than a global minimum. To avoid this problem
of overly fast convergence, we force the routine to explore other areas of the
cost surface by randomly introducing changes, or mutations, in some of the
variables. For the binary GA, this amounted to just changing a bit from a 0 to
a 1, and vice versa. The basic method of mutation is not much more compli-
cated for the continuous GA. For more complicated methods, see Michalewicz
(1994).

As with the binary GA, we chose a mutation rate of 20%. Multiplying the
mutation rate by the total number of variables that can be mutated in the pop-
ulation gives 0.20 ¥ 7 ¥ 2 � 3 mutations. Next random numbers are chosen to
select the row and columns of the variables to be mutated. A mutated vari-
able is replaced by a new random variable. The following pairs were randomly
selected:

The first random pair is (4, 1). Thus the value in row 4 and column 1 of the
population matrix is replaced with a uniform random number between one
and ten:

Mutations occur two more times. The first two columns in Table 3.4 show the
population after mating. The next two columns display the population after
mutation. Associated costs after the mutations appear in the last column. The
mutated values in Table 3.4 appear in italics. Note that the first chromosome

5.6130 fi 9 8190.
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is not mutated due to elitism. The mean for this population is -3.202. The third
offspring (row 7) has the best cost due to the crossover and mutation. If the
x-value were not mutated, then the chromosome would have a cost of 0.6 and
would have been eliminated in the natural selection process. Figure 3.3 shows
the distribution of chromosomes after the first generation.

Most users of the continuous GA add a normally distributed random
number to the variable selected for mutation

(3.6)

where

s = standard deviation of the normal distribution
Nn(0, 1) = standard normal distribution (mean = 0 and variance = 1)

p pn n n¢ = + ( )sN 0 1,

TABLE 3.4 Mutating the Population

Population after
Population after MutationsMating

x y x y cost

7.7246 5.5655 7.7246 5.5655 -9.8884
0.18758 8.9371 0.18758 8.9371 -8.0108
2.6974 6.2647 2.6974 6.2647 -2.8957
5.613 0.12885 9.819 7.1315 17.601
0.2558 6.2647 0.2558 6.2647 -0.03688
2.6292 8.9371 2.6292 8.9371 -10.472
6.6676 5.5655 9.1602 5.5655 -14.05
3.7544 6.2647 3.7544 6.2647 2.1359

Figure 3.3 Contour plot of the cost function with the population after the first 
generation.



62 THE CONTINUOUS GENETIC ALGORITHM

We do not use this technique because a good value for s must be chosen, the
addition of the random number can cause the variable to exceed its bounds,
and it takes more computer time.

3.1.8 The Next Generation

The process described is iterated until an acceptable solution is found. For our
example, the starting population for the next generation is shown in Table 3.5
after ranking. The bottom four chromosomes are discarded and replaced by
offspring from the top four parents. Another three random variables are
selected for mutation from the bottom 7 chromosomes. The population at the
end of generation 2 is shown in Table 3.6 and Figure 3.4.Table 3.7 is the ranked
population at the beginning of generation 3. After mating, mutation, and
ranking, the final population after three generations is shown in Table 3.8 and
Figure 3.5.

TABLE 3.5 New Ranked Population at the Start of
the Second Generation

x y Cost

9.1602 5.5655 -14.05
2.6292 8.9371 -10.472
7.7246 5.5655 -9.8884
0.18758 8.9371 -8.0108
2.6974 6.2647 -2.8957
0.2558 6.2647 -0.03688
3.7544 6.2647 2.1359
9.819 7.1315 17.601

TABLE 3.6 Population after Crossover and Mutation
in the Second Generation

x y Cost

9.1602 5.5655 -14.05
2.6292 8.9371 -10.472
7.7246 6.4764 -1.1376
0.18758 8.9371 -8.0108
2.6292 5.8134 -7.496
9.1602 8.6892 -17.494
7.7246 8.6806 -13.339
4.4042 7.969 -6.1528
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TABLE 3.7 New Ranked Population at the Start of
the Third Generation

x y Cost

9.1602 8.6892 -17.494
9.1602 5.5655 -14.05
7.7246 8.6806 -13.339
2.6292 8.9371 -10.472
0.18758 8.9371 -8.0108
2.6292 5.8134 -7.496
4.4042 7.969 -6.1528
7.7246 6.4764 -1.137

TABLE 3.8 Ranking of Generation 3 from Least to
Most Cost

x y Cost

9.0215 8.6806 -18.53
9.1602 8.6892 -17.494
9.1602 8.323 -15.366
9.1602 5.5655 -14.05
9.1602 8.1917 -13.618
2.6292 8.9371 -10.472
7.7246 1.8372 -4.849
7.8633 3.995 4.6471

Figure 3.4 Contour plot of the cost function with the population after the second 
generation.

Administrator
ferret
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3.1.9 Convergence

This run of the algorithm found the minimum cost (-18.53) in three genera-
tions. Members of the population are shown as large dots on the cost surface
contour plot in Figures 3.2 to 3.5. By the end of the second generation, chro-
mosomes are in the basins of the four lowest minima on the cost surface. The
global minimum of -18.5 is found in generation 3. All but two of the popula-
tion members are in the valley of the global minimum in the final generation.
Figure 3.6 is a plot of the mean and minimum cost for each generation. The
GA was able to find the global minimum, unlike the Nelder-Mead and BFGS
algorithms presented in Chapter 1.

Figure 3.5 Contour plot of the cost function with the population after the third and
final generation.
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Figure 3.6 Plot of the minimum and mean costs as a function of generation. The algo-
rithm converged in three generations.



3.2 A PARTING LOOK

The binary GA could have been used in this example as well as a continuous
GA. Since the problem used continuous variables, it seemed more natural to
use the continuous GA. The next chapter presents some practical optimiza-
tion problems for both the binary and continuous GAs. Selecting the various
GA parameters, such as mutation rate and type of crossover, is still more of
an art than a science and will be discussed in Chapter 5.
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EXERCISES

1. Write a continuous GA that uses the following crossover:

a. (3.7)
b. (3.8)
c. (3.9)
d. (3.10)
e. (3.14)

2. Write a continuous GA that uses:

a. Pairing parents from top to bottom
b. Random pairing
c. Pairing based on cost
d. Roulette wheel rank weighting
e. Tournament selection
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3. Find the minimum of _____ (from Appendix I) using your continuous GA.

4. Experiment with different population sizes and mutation rates.Which com-
bination seems to work best for you? Explain.

5. Compare your GA with one of the following local optimizers:

a. Nelder-Mead downhill simplex
b. BFGS
c. DFP
d. Steepest descent
e. Random search

6. Since the GA has many random components, it is important to average the
results of several runs. Write a program that will average the results of
several GA runs. Now, do another one of the exercises and compare results.

7. Plot the convergence of the GA. Which GA parameters have the most
effect on convergence?

8. Compare the performance of the binary and continuous GAs. Which do
you prefer and why? Does the type of problem make a difference?
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CHAPTER 4

Basic Applications

67

The examples in this chapter make use of the GAs introduced in Chapters 2
and 3. Enough details are provided for the user to try the problems themselves,
and examples of the cost function are provided in some cases. Remember, the
GA uses a random number generator, so the exact results won’t be repro-
ducible. The first five examples are somewhat generic, using methods directly
applicable to a wide range of problems. They are specifically designed to show
the wide range of applicability of both the binary and the continuous GA.
They begin with use of the GA in the arts and games before moving onto a
not too difficult mathematical problem. The next example is more arcane in
that it deals with an extremely problem-specific cost function. However, the
solution method is very straightforward, and the subroutine for the cost 
function could be replaced to solve many problems in the same vein. The 
last example demonstrates using a GA to simulate natural evolution of an
animal—the horse.

4.1 “MARY HAD A LITTLE LAMB”

In the first example, we’ll test the musical talent of the GA to see if it can learn
the first four measures of “Mary Had a Little Lamb.” This song is in the key
of C with 4/4 time and only has quarter and half notes. In addition the fre-
quency variation of the notes is less than an octave. A chromosome for this
problem has 4 ¥ 4 = 16 genes (one gene for each beat). The binary GA is
perfect because there are eight distinct notes, seven possible frequencies, and
one hold. The encoding is given in Table 4.1. A hold indicates the previous
note is a half note. (It is possible to devote one bit to indicate a quarter or half
note. However, this approach would require variable-length chromosomes.)
The actual solution only makes use of the C, D, E, and G notes and the hold.
Therefore the binary encoding is only 62.5% efficient. Since the exact notes
in the song may not be known, the inefficiency is only evident in hindsight. An

Practical Genetic Algorithms, Second Edition, by Randy L. Haupt and Sue Ellen Haupt.
ISBN 0-471-45565-2 Copyright © 2004 John Wiley & Sons, Inc.
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exhaustive search would have to try 816 = 2.8147 ¥ 1014 possible combinations
of notes.

In this case we know the correct answer, and the notes are shown in Figure
4.1. Putting the song parameters into a row vector yields

with a corresponding chromosome encoded as

We’ll attempt to find this solution two ways. First, the computer will compare
a chromosome with the known answer and gives a point for each bit in the
proper location. This is an objective cost function. Second, we’ll use our ear
(very subjective) to rank the chromosomes.This type of cost function is known
as interactive.

The objective cost function subtracts the binary chromosome (guess) from
the chromosome with the known result (answer) and sums the absolute value
of all the digits:

(4.1)cost answer n guess n
n

= [ ] - [ ]
=

Â
1

48

101 100 011 100 101 101 101 000 100 100 100 000 101 111 111 000[ ]

EDCDEEEholdDDDholdEGGhold[ ]

TABLE 4.1 Binary Encoding of the Musical Notes
for “Mary Had a Little Lamb”

Code Note

000 hold
001 A
010 B
011 C
100 D
101 E
110 F
111 G

Figure 4.1 Music to “Mary Had a Little Lamb.”
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When a chromosome and the true answer match, the cost is zero. In this case
the GA uses Npop = 48, Nkeep = 24, and m = 0.05. Figure 4.2 shows an example
of the cost function statistics as a function of generation. The GA consistently
finds the correct answer over many different runs.

The second cost function is subjective and interactive. This is an interesting
twist in that it combines the computer with a human response to judge per-
formance. Cost is assigned from a 0 (that’s the song) to a 100 (terrible match).
This algorithm wears on your nerves, since some collection of notes must be
played and judged for each chromosome. Consequently the authors could only
listen to the first two measures and judge the performance. Figure 4.3 shows
the cost function statistics as a function of generation. Compare this graph 
with the previous one. Unlike all other examples, the minimum cost is not
monotonically decreasing, even though the GA used elitism.

Subjective cost functions are quite fascinating. A chromosome in the first
generations tended to receive a lower cost than the identical chromosome in
later generations. This accounts for the increase in the minimum cost shown
in Figure 4.3. Many chromosomes produce very unmelodic sounds. Changing
expectations or standards is common in everyday life. For instance, someone
who begins a regular running program is probably happier with a 10 minute
mile than she would be after one year of training. The subjective cost function
converged faster than the mathematical cost function because a human is able
to evaluate more aspects of the experiment than the computer. Consider the
difference between a G note and the C, E, and F notes. The human ear ranks
the three notes according to how close they are to G, while the computer only
notices that the three notes differ from G by one bit. A continuous parame-
ter GA might work better in this situation.
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Figure 4.2 The minimum cost and mean cost as a function of generation when the
computer knows the exact answer (all the notes to “Mary Had a Little Lamb”).
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Extensions to this idea are limitless. Composing music (Biles, 1994; Jacob,
1995) and producing art with a GA are interesting possibilities. Putnam (1994)
tried his hand at composing music with a GA. The idea was to construct
random pieces of music and rate them for their musical value. Putnam used
two approaches. The first combined mathematical functions (like sine and
cosine) in the time domain. This approach produced too much noise, and
people had difficulty judging the performance (patience and tolerance were
difficult). The second approach used notes as in our example. This approach
worked better, but listening to many randomly generated music pieces is too
difficult for most of us. He concluded:

The primary problems with these programs seem to be those involving the
human interface. The time it takes to run the program and listen to the samples
combined with the relative dullness of the samples mean that the users rapidly
get tired and bored. This means that the programs need to be built to generate
the samples relatively quickly, the samples need to be relatively short, the
samples need to develop and evolve to be interesting quickly and of necessity
the population size must be small.

We have seen a very simple application with a known solution. Despite the
difficulties, genetic music is being composed by musicians much more gifted
than us. John Biles mentors his GA, GenJam, behind the scenes; then it impro-
vises solos, responding to Biles’s trumpet solos interactively. They have played
gigs billed as the “AI Biles Virtual Quintet” at various conferences as well as
for weddings and other social functions (Biles, 1994, 2002). Although it spe-
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Figure 4.3 The minimum cost and mean cost as a function of generation when the
subjective cost function was used (our judgment as to how close the song associated
with a chromosome came to the actual tune of “Mary Had a Little Lamb”).



cializes in Jazz and Latin tunes, it includes some New Age in its repertoire.
Spector and Alpern (1995) trained a neural network on Charlie Parker frag-
ments, and then used that as a fitness function for a genetic programming
system.The simplest applications did not produce pleasing melodies, but when
more refined methods were used, they began to produce acceptable music
fragments. In essence, by defining what makes “good” music, these musicians
are coding the process of decision making. Wiggens et al. (1999) trained a GA
to generate four-part harmony for given melodies using precoded criteria
rather than a human interface. A music professor deemed the results of some
very basic trials more successful than most first-year undergraduate music 
students. Using different encoded composition rules, a GA was also able to
produce acceptable solos. However, they concluded that the GA was limited
in ability due to the combination of its inherent stochasticity and its inability
to structure the reasoning process in the way that human composers can. Are
these limitations only due to our current abilities to define the rules that make
pleasant music? Or will humans never be surpassed by genetic composers?

The idea of a subjective cost function is closely tied to work with fuzzy sets
and logic (Ross, 1995). In classical set theory, an element is either a member
or not. In fuzzy set theory, an element can have various degrees of member-
ship. Thus the boundaries between fuzzy sets are vague and ambiguous. Is this
piece of art or music good? We’re likely to be fuzzy about our decision and
assign a cost between zero and one rather than either a zero or a one. Since
the GA carries a list of answers in descending order of preference, it is perfect
for fuzzy design applications. These sorts of interactive processes are becom-
ing more a popular as we try to use computers to simulate and interact with
human thought processes.

4.2 ALGORITHMIC CREATIVITY—GENETIC ART

Let’s build on the artistic creativity of Section 4.1, but now in terms of visual
art. Creativity is a right-brained activity and is often considered mutually
exclusive of the more left-brained functions like logic and math that are asso-
ciated with computers. Art is probably one of the most creative human func-
tions. Can a computer actually create or improve a work of art? Improving is
equivalent to optimizing. What better optimization tool to use for the creative
process than one that is based on natural selection—the GA.

There are currently a plethora of applications of evolutionary algorithms
applied to art. The Web is a rich source of information and examples on art
creation using GAs, including many sites with galleries for browsing genetic
art. Others even include an option to vote for your favorite designs. A 
brief review of the use of GAs in visual art and music was presented by
Johnson and Romero Cardalda (2002). Karl Sims (1991) provided an early
demonstration of how effectively evolutionary algorithms could be used to
create computer graphics and animation. Todd and Latham (1992) produced
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MUTATOR, an algorithm that “breeds” new art forms, sometimes resulting
in rather complex pleasing abstract forms. Fractal movies have been made
using genetic programming (Angeline, 1996). These movies were generated
with judgment input by the user. Other researchers have color-mapped GA
convergence to a phase space to create beautiful fractal images (Juliany and
Vose, 1993). These images resemble the fractal art generated by applying iter-
ative methods to solving nonlinear equations (Mendelbrot, 1982).

Our own art experiment is rather novice. It creates plots using an iterative
function system (IFS) based on the affine transformation:

(4.2)

where [un, vn] are the points to be plotted and the [ci,i = 1,10] are the coeffi-
cient variables to be optimized. Each plot is composed of iterative points for
n = 10,000. We use a continuous GA with tournament selection, a mutation
rate of 0.1, population size of 16, and elitism. Human judgment is the cost func-
tion to rate the appeal of the GA created art. The initial 16 art plots are shown
in Figure 4.4. The art evaluator assigned cost values based on her personal
preference for each form. After 6 iterations the genetic art had evolved to the
forms found in Figure 4.5. The evaluator chose number 12 as her favorite cre-
ation.Although judging art was not as sanity challenging as the music example
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Figure 4.4 The initial 16 fractal art pieces initialized by the GA.
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Figure 4.5 The final 16 fractal art pieces after 6 iterations. Number 12 was chosen as
“best”.

of Section 4.1, it was difficult to be consistent over time. A human has the pre-
rogative of changing her mind.

We also did a similar experiment using a group vote as a slightly different
type of cost function for comparison. This work is reported in Haupt and
Haupt (2000). We created plots using the mathematical form: c1x sin (c2x) + c3y
sin(c4y) and filled in color pallets. The variables were the [ci, i = 1,4]. Costs
were assigned to the artwork based on the judgment of a group of 38 algo-
rithmic art specialists (a class of students taking Numerical Methods for Engi-
neers). At each iteration, the specialists would be presented with 16 patterns
from which to choose. In the early stages of the experiment each person would
vote for his or her favorite two pieces of artwork. That vote was used to
compute the probability of mating for the chromosome that it represented.
After a couple of iterations the cost function was altered. Each person had
only one vote. The process was continued for four iterations (when class was
over). The winning design had less continuity than when a single evaluator
chose. The second place design did not look much like the one that won first
place. Personal preference is not at all like an objective measure with a single
solution. Most voters preferred a design with a discernable large-scale pattern
over those that were more small scale and “noisy.” However, whether one
prefers vertical patterns over circular or plaid patterns is a very personal deci-
sion. Thus results tend to be quite different when a group vote is taken rather
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than relying on the judgment of a single person. Which of the patterns in
Figure 4.5 do you prefer?

An interesting aspect of these first two examples is seeing how computer
calculations can be combined with human judgment. For instance, the Euro-
pean Weather Agency (ECMWF) runs their weather prediction simulations
with several slightly differing initial conditions to produce a set of different
forecasts (due to sensitivity of initial conditions). Note that for weather fore-
casting the biggest source of error is usually the assimilation of data from all
over the world in initializing the model. This set of forecasts is then presented
to skilled human forecasters to make a decision on the most likely scenario.
A similar strategy can be used in design. Most people use computers to help
design new products. Various parameters, bounds, and tolerances are input to
the computer and eventually a design pops out. Perhaps a better approach is
to have a closer interaction between the computer and the human designer.
A computer calculates and does mundane tasks well, such as sorting a list.
However, it is not good at making subjective judgments. If the computer
program occasionally stops and presents some options and their associated
costs to the designer, then the designer has the ability to add a human element
to that design process. Feelings and judgment are hard to quantify, yet they
are at the core of the creative thought process. But are they really mutually
exclusive from logic? We can use the computer to optimize the weight of a
car, but input from human beings is necessary to optimize the style. Putting
human judgment into the mathematical formula closely ties the power of the
computer in evaluating mathematical expressions and searching long lists of
combinations with the opinions that only humans can provide.

Figure 4.6 summarizes the combined creative process. An experiment pro-

Figure 4.6 An iterative approach to creativity that combines human judgment with a
GA.



duces data that is presented to a human observer. That person judges the
appeal (or fitness) of the options. This judgment is then used by the computer
(via the GA) to produce the probabilities of mating that will form the next
generation of the experiment. The process iterates until the outcome is judged
to be good enough.

One more related issue involves a philosophical discussion in the literature
of whether the computer becomes the creator. A distinction can be made
between the creator and the critic. Some evolutionary art evolves without the
judgment step and sometimes results in rather interesting art forms. Does that
mean that the creative process was solely algorithmic and no sentient designer
was necessary? It may be interesting to ponder, but we point out that some-
body wrote the program.

4.3 WORD GUESS

We made a word guess game in which the GA is given the number of letters
in a word, and it guesses the letters that compose the word until it finds the
right answer. In this case we’ll use a GA where each letter is given the integer
corresponding to its location in the alphabet (a = 1, b = 2, etc.). Establishing
the rules of the game determines the shape of the cost surface. If the cost 
is the sum of the squares of the differences between the numbers re-
presenting the letters in the chromosome (computer’s guess at the word) and
the true answer, then the surface is described by the least mean square dif-
ference between the guess and the true answer:

(4.3)

where

# letters = number of letters in the word
guess[n]  = letter n in the guess chromosome
answer[n] = letter n in the answer

Figure 4.7 shows the cost surface for the two-letter word “he” given the cost
function in (4.3). There are a total of 262 = 676 possible combinations to check.
For N letters there are 26N possible combinations. The unknown word that the
GA must find is “colorado.” The GA uses Npop = 32, Nkeep = 16, and m = 0.04.
After 27 iterations the GA correctly guesses the word. The guesses as a func-
tion of generation are given in Table 4.2.

A slight change to the previous cost function creates a completely differ-
ent cost surface. This time a correct letter is given a zero, while an incorrect
letter is given a one. There is no gray area associated with this cost function.

cost guess n answer n
n

letters

= [ ] - [ ]( )
=

Â 2

1

#
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Figure 4.7 Cost surface for the two-letter word “he” associated with (4.3). There are
a total of 262 = 676 possible combinations.

TABLE 4.2 GA’s Best Guess (First Cost Function)
after Each Generation

Generation Best Guess

1 dhgmtfbn
2 bmloshjm
3 bmloshjm
4 bmlorfds
5 bmlorfds
6 bmlorddm
7 bmlorddm
8 bmlorddm
9 bmlosadn

10 bmlosadn
11 bmlosadn
12 bmlosadn
13 bmlosadn
14 cmlorbdo
15 cmlorbdo
16 cmlorbdo
17 cmlorbdo
18 cmlorbdo
19 cmlorbdo
20 colorbdo
21 colorbdo
22 colorbdo
23 colorbdo
24 colorbdo
25 colorbdo
26 colorbdo
27 colorado
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(4.4)

where

(4.5)

Figure 4.8 shows the cost surface for the two-letter word “he” with the cost
function given by equation (4.4). We now apply this function to the word “col-
orado.” After 17 generations and Nipop = 64, Npop = 32, keep = 16, and m = 0.04,
the GA correctly guesses the word (colorado) as shown in Table 4.3. This is
quite an accomplishment given that the total number of possible combinations
is 268 = 2.0883 ¥ 1011. Part of the reason for the success of the second cost func-
tion is that it has a large cost differential between a correct and incorrect letter,
while the first cost function assigns a cost depending on the proximity of the
correct and incorrect letters. As a result a chromosome with all wrong letters,
but whose letters are close to the correct letters, receives a low cost from the
second cost function but a high cost from the first cost function. When cost
weighting determines the mating pool, the second cost function tends to have
parents with more correct letters than the first cost function would.

4.4 LOCATING AN EMERGENCY RESPONSE UNIT

An emergency response unit is to be built that will best serve a city. The goal
is to provide the minimum response time to a medical emergency that could
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Figure 4.8 Cost surface for the two-letter word “he” associated with (4.4).
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occur anywhere in the city. After a survey of past emergencies, a map is con-
structed showing the frequency of an emergency in a given section of the city.
The city is divided into a grid of 10 ¥ 10km with 100 sections, as shown in
Figure 4.9. The response time of the fire station is estimated to be 1.7 + 3.4r
minutes, where r is in kilometers. This formula is not based on real data, but
an actual city would have an estimate of this formula based on traffic, time of

TABLE 4.3 GA’s Best Guess (Second Cost 
Function) after Each Generation

Generation Best Guess

1 pxsowqdo
2 pxsowqdo
3 pxsowqdo
4 bodokado
5 bodokado
6 bodokado
7 bodokado
8 dslorado
9 dslorado

10 dslorado
11 dslorado
12 dslorado
13 cozorado
14 cozorado
15 cozorado
16 cozorado
17 colorado

Figure 4.9 A model of a 10 ¥ 10km city divided into 100 equal squares.
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day, and so on. An appropriate cost function is the sum of the distances
weighted by the frequency of emergencies or

(4.6)

where

(xn, yn) = coordinates of the center of square n
(xfs, yfs) = coordinates of the proposed emergency response unit
wn = fire frequency in square n (as shown in Figure 4.9)

The cost surface for this problem is shown in Figure 4.10. It appears to be a
nice bowl-shaped surface that minimum-seeking algorithms love.The problem
for many algorithms is the discrete weighting assigned to the city squares and
the small discontinuities in the cost surface that are not apparent from the
graph. This example was inspired by an example from a book by Meerschaert
(1993) in which the location of a fire station in a community broken into a 
6 ¥ 6 square grid and with a cost function similar to (4.6) is to be found. The
author used a random search algorithm instead of a gradient-based method,
because it is not possible to algebraically solve �cost = 0 even though �cost
can be calculated. This problem seemed too easy for the GA, so we increased
the grid size and added the constraints.

On the other hand, including some constraints complicates the cost surface,
so it would be difficult for a minimum seeking algorithm to find the bottom.
Consider adding a river with only two bridges that cross it. The river is located
at y = 6km from the bottom and the bridges cross at y = 1.5 and 6.5km from
the left (as shown in Figure 4.11). This new cost surface has two distinct

cost w x x y yn n fs n fs
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Figure 4.10 Cost surface associated with the cost function in (4.6).
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minima, as shown in Figure 4.12. The solution found by the GA is to place the
fire station close to the bridge at (x, y) = (6, 6).

We used both a binary GA and a continuous GA with Npop = 20, Nkeep = 10,
and m = 0.2. Each algorithm was run 20 different times with 20 different
random seeds.The average minimum cost of a population as a function of gen-
eration is shown in Figure 4.13. The continuous parameter GA outperformed
the binary GA by finding a much lower minimum cost over 25 generations.
Ultimately, the binary GA only took one more generation to find the minimum
than the continuous parameter GA.

Figure 4.11 A model of a 10 ¥ 10km city divided into 100 equal squares with a river
and two bridges.

0

5

10

0

5

10
0.5

1

1.5

2

2.5
x 10 4

kmkm

co
st

Figure 4.12 Cost surface associated with the cost function in (4.6) and the added con-
straint of a river and two bridges.
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4.5 ANTENNA ARRAY DESIGN

Satellite communication systems use antennas to receive signals transmitted
from a satellite. The antenna has a main beam and sidelobes. The main beam
points into space in the direction of the satellite and has a high gain (gain times
received signal power equals power sent to the receiver) to amplify the weak
signals. Sidelobes have low gains and point in various directions other than the
mainbeam. Figure 4.14 shows a typical antenna pattern with a mainbeam and
sidelobes. The problem with sidelobes is that strong undesirable signals may
enter them and drown out the weaker desired signal entering the mainbeam.
Consider a satellite antenna that points its mainbeam in the direction of a
satellite. The satellite signal is extremely weak because it travels a long dis-
tance and the satellite transmits a low power. If a cellular phone close to the
satellite antenna operates at the same frequency as the satellite signal, the
phone signal could enter a sidelobe of the satellite antenna and interfere with
its desired signal. Thus engineers are motivated to maximize the mainbeam
gain while minimizing the sidelobe gain.

One type of satellite antenna is the antenna array. A key feature of this
antenna is the ability to reduce the gain of the sidelobes. An antenna array is
a group of individual antennas that add their signals together to get a single
output. The received signals at each of the antenna elements has an amplitude
and phase that is a function of frequency, element positions, and angle of inci-
dence of the received signal.The output of the array is a function of the weight-
ing of the signals at the elements. It is possible to weight the amplitudes of the
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Figure 4.13 Plot of the minimum of the population as a function of generation for
the binary genetic and continuous parameter GAs applied to the emergency response
unit problem. These results were averaged over 20 different runs.
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signals at the elements to reduce or eliminate sidelobes. This example shows
how to use a GA to design a low sidelobe antenna array.

The linear array model has point sources lying along the x-axis (Figure
4.15), and the amplitude taper is symmetric about the center of the array. Its
mathematical formulation when the mainbeam points at 90° is given by
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Figure 4.14 Plot of an antenna pattern (response of the antenna vs. angle) that shows
the mainbeam and sidelobes.

Figure 4.15 Model of a linear array of antenna elements.
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(4.7)

where

N = number of elements = 2Nvar

Y = kdu = kd cos j
an = array amplitude weight at element n for am = aN+1-m for m = 1, 2, . . . , N/2
k = 2p/l
l = wavelength
d = spacing between elements
j = angle of incidence of electromagnetic plane wave

The goal is to find the an in this formula that yield the lowest possible side-
lobe levels in the antenna pattern.

There is a solution to this problem that produces sidelobes that are -•
below the peak of the mainbeam: in other words, no sidelobes at all (Figure
4.16). The analytical solution is called the binomial array, and the amplitude
weights are just the binomial coefficients. Thus a five-element array has
weights that assume the coefficients of a binomial polynomial with five 
coefficients. Binomial coefficients of an (N - 1)th-order polynomial, or 
binomial weights of an N element array, are the coefficients of the polynomial
(z + 1)N-1 given by the Nth row of Pascal’s triangle:

1

1 1

1 2 1 (4.8)

1 3 3 1

1 4 6 4 1

Our first attempt tried to eliminate the sidelobes of a 42-element array with
d = 0.5l. Both the binary and continuous parameter GAs failed to find an
amplitude taper that produced maximum sidelobe levels less than -40dB
below the peak of the mainbeam. This result was very disappointing. The
problem centers around the cost function formulation. The cost function was
the maximum sidelobe level of (4.7) with the parameters being an. This for-
mulation is difficult to implement and allows undesirable solutions, such as
shoulders on the mainbean, that confuse the GA.

A different cost function worked much better. The new formulation makes
a substitution of variables in equation (4.7):

(4.9)z e j= Y

M

AF a en
j n

n

N

j( ) = -( )

=
Â 1
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Y



84 BASIC APPLICATIONS

This substitution is known as a z-transform and converts equation (4.7) to

(4.10)

where . The cost function is the maximum sidelobe level of equation
(4.10) with um = cos jm as the parameters. What a difference! As mentioned in
Chapter 2, the cost function design is extremely important. Figure 4.17 shows
the convergence of the continuous GA with Nvar = 21, Npop = 20, Nkeep = 8, and
m = 0.2. This excellent performance is exceeded by the binary GA with Nvar =
21, Ngene = 10, Npop = 20, Nkeep = 8, and m = 0.2 (Figure 4.18). Since these algo-
rithms are random, perhaps the binary GA won due to chance. To reduce 
the impact of chance, both algorithms were run ten times with a different
random seed each time. They ran for 75 generations with Nvar = 21, Npop = 128,
Nkeep = 64, and m = 0.2. Figure 4.19 shows the results of the average minimum
cost at each generation. Again, the binary GA wins.
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Figure 4.16 Plot of the binomial array antenna pattern. Note the lack of sidelobes.
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Why does the binary GA outperform the continuous parameter GA?
Perhaps it is the size of the search space that must be considered. In this
example, the binary GA searches over 1021 possible solutions. This very large
number is small compared to the • number of possible combinations with the
continuous parameter GA. In any event, the large number of variables miffs
minimum seeking algorithms. For example, the Nelder-Mead algorithm failed
to converge after 4000 iterations and a random starting point.
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Figure 4.17 Plot of the mean (dashed) and minimum (solid) of the population as a func-
tion of generation for the continuous parameter GA applied to the antenna design
problem.
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Figure 4.18 Plot of the mean (dashed) and minimum (solid) of the population as a
function of generation for the binary GA applied to the antenna design problem.
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4.6 THE EVOLUTION OF HORSES

What could be a more natural application of GAs than to study a natural evo-
lution process? And what more beautiful and well-studied animal than the
horse? Since such a problem can capture the imagination of just about any
age, this demonstration reports on the science projects of one girl (our daugh-
ter) during her eighth and ninth grade years. Thus we will also see how the
basics of GAs are easy enough for even a middle school student with an inter-
est in computing to grasp. Although she began with a working binary GA and
knew a little bit of programming already, she learned to write her own cost
function subroutines and encode the variables in binary.

This example is a bit different than most of the other applications in this
book. We aren’t trying to optimize in the same sense as the rest of the prob-
lems. Instead, we are observing a search where one parameter is traded off
against another one when exploring a large number of variables. Not only are
there adaptation factors assigned to each environment, but each environment
also assigns weighting factors to the importance of each characteristic. This
second factor allows for some “chance” in the evolution. Thus we don’t always
observe the horses evolving to a single best individual, but rather see a more
diverse evolution. The less important factors are “traded off” in an effort to
optimize more important factors.

In the first part of this example, we examine the evolution of traits of horses
in carefully defined environments using a GA. This sounds simple enough, but
there are enough possible combinations of traits and environments to compli-
cate matters.The first step is to define the environments and the adaptable char-
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Figure 4.19 Convergence of the binary and continuous parameter GAs as a function
of generation when averaged over ten different runs.



acteristics.Two sorts of environments are considered.The first is a natural envi-
ronment in which horse populations might develop. Natural environments 
considered include deserts, plains, dry mountains (e.g., the Sierra Nevada),
northern tundra, pine forests, and the Australian outback. A second type of
environment is the type of riding for which people may use a horse. An 
experienced rider may want different characteristics for her horse than a begin-
ning rider. An English rider doing dressage and jumping may have different
expectations of a horse than a western cow handler. Note the distinction
between the two types of environment. In the first case, a natural evolution
would be expected to take place. In the second type, selection is due to the
requirements of a human environment as well as human preferences. In other
words, the first is for wild horses while the second assumes the horse has been
domesticated.

Horse characteristics considered were breed (or actually the characteristics
of that breed), color, hoof hardness, length of mane and tail, the predominance
of the fight or flee instinct, whether the horse is spirited or tame, foot 
markings, facial markings, thickness of the coat, eye color, water requirements,
and long versus short distance running ability. These characteristics were
coded in binary genes and concatenated to form chromosomes encompassing
these particular characteristics. For each environment each characteristic was
assigned an adaptation factor, adapti, that denotes the degree to which the 
ith characteristic is adaptable to that environment. The factors for each 
color are listed in the MATLAB code below for the sand dune desert 
environment. Gray and black were assigned low adaptation factors of 0.1
(since black attracts heat and gray are easily sunburned), while most others
were deemed neutral and assigned 0.5, meaning that evolution is more by
chance.

% color
if color(ind,:) == [0 1 0 1]
adapt(2)= 0.5; % Appaloosa

elseif color(ind,:) == [0 1 1 0]
adapt(2)= 0.5; % Paint

elseif color(ind,:) == [0 1 0 0]
adapt(2)= 0.5; % Dapple

elseif color(ind,:) == [0 1 1 1]
adapt(2)= 0.5; % Blue Roan

elseif color(ind,:) == [0 0 0 1]
adapt(2)= 0.1; % Gray

elseif color(ind,:) == [0 0 1 0]
adapt(2)= 0.1; % Black

elseif color(ind,:) == [0 0 0 0]
adapt(2)= 0.6; % Palomino

elseif color(ind,:) == [1 1 1 1]
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adapt(2)= 0.6; % Buckskin
elseif color(ind,:) == [0 0 1 1]
adapt(2)= 0.5; % Chestnut

elseif color(ind,:) == [1 1 1 0]
adapt(2)= 0.5; % Bay

elseif color(ind,:) == [1 0 0 1]
adapt(2)= 0.5; % Flaxen Maned Sorrel

else
adapt(2)= 0;

end

The importance of each characteristic to each environment would be
expected to vary. For instance, it may be extremely important for a desert horse
to be able to go long periods without water. Yet for a domestic riding horse
that is watered regularly, this characteristic may not matter. For horses in the
northern tundra a thick coat may be quite important, while it would actually
be a detriment in a desert. A horse on the plains would do best with a thick
coat in the winter that thins in the summer. Color may not matter much for
domesticated horses, while it could be an important adaptation factor for wild
horses. The color adaptability, however, is highly dependent on the environ-
ment. A white coat would reflect the sunlight and be an advantage in a hot
desert environment. However, in a northern tundra a dark coat could be useful
for absorbing sunlight. Therefore a weighting function is necessary to define
the relative importance of each characteristic in each environment. For
instance, the weighting factor for the sand dune desert appears below with the
weights being in the same order as the characteristics listed above. We see that
hoof hardness, length of mane and tail, number of socks, and facial markings
are given weightings of wti = 0.1, meaning that they are relatively unimpor-
tant. In contrast, water requirements are weighted as the most important at
0.9, and coat thickness was next most important at 0.8.

Function cost=sandundes(chrom)
% parameter weighting (importance factor) for this
environment
wts=[.5,.6,.1,.1,.3,.4,.1,.1,.8,.6,.9,.5];

The cost function for each horse is then computed as the sum of the prod-
ucts of the adaptation factors of the horse characteristics with the weighting
factors of how important each characteristic is for the particular environment
considered:

(4.11)cost adapt wti i
i

= - ¥
=
Â
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The GA was run for 50 generations for a population of 20 horses. The muta-
tion rate was set at 9% and pairing was done by rank. The results appear in
Tables 4.4 and 4.5. These tables list the characteristics of the horse with the
lowest cost after 50 generations. Often the second horse was highly different

TABLE 4.4 Evolution of Horse Characteristics for Six Natural Environments

Environment/ Dry Northern Pine
Characteristic Desert Plains Mountains Tundra Forest Outback

Breed Brumby Lipizzan Arabian Mustang Lipizzan Mustang
Color Palomino Palomino Flaxen Black Chestnut Blue

sorrel Roan
Hooves Soft Hard Hard Soft Hard Hard
Mane/tail Short Short Short Short Short Short
Fight/flee Fight Both Both Fight Fight Both
Spirit Spirited Spirited Spirited Spirited Spirited Spirited
Socks 1 sock 3 socks None 2 socks 3 socks 4 socks
Face Blaze None Star None None Blaze
Coat Thin Seasonal Seasonal Thick Thick Thin
Eyes Blue Blue Blue Brown Blue Blue
Water High High High High Low Low

requirements
Running Short Long Short Long Long Short

distance distance distance distance distance distance

TABLE 4.5 Evolution of Horse Characteristics for Four Types of Riding 
Environments

Use/ Beginning Experienced English Western
Characteristic Rider Rider Riding Riding

Breed Tennessee Irish Hunter Tennessee Tennessee
walker walker walker

Color White Paint Dapple Black
Hooves Soft Hard Hard Hard
Mane/tail Long Long Short Short
Fight/flee Flee Fight Flee Both
Spirit Tame Tame Semi Semi
Socks 1 sock 3 socks 3 socks 4 socks
Face Mask Star None None
Coat Thin Seasonal Seasonal Seasonal
Eyes Blue Blue Blue Blue
Water Low Low Low Low

requirements
Running Short Long Long Long

distance distance distance distance
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in the characteristics with low weighting factors. Thus less important charac-
teristics like the number of socks (leg markings) varied widely, just as in real
life.

Although a GA produces interesting results for this case, note that both the
adaptation factors and the weighting factors were assigned quantitative values
by a qualitative method. Personal judgment of one informed horsewoman
determined these weights. In other words, the project was devised to get ex-
pected results for the most important factors. Perhaps that explains the pre-
dominance of blue-eyed horses in the tables while they are much rarer in real
life. Less important factors were left more to chance. The population and iter-
ations were limited so that at least some element of chance remains in the lack
of time to evolve to a perfect horse for each environment. So does the natural
world. Not only does the adaptive value of a particular characteristic differ for
differing environments, but the environment evolves along a parallel (albeit
longer) time scale. In particular, the human preference for particular types of
horses is quite fickle and depends not only on a horse’s ability to run fast
(useful in racing), but also according to color and marking preferences. These
choices justify the qualitative setting of adaptation and weighting factors in 
such cases. Yet horses and other species manage to survive and evolve. Figure
4.20 shows some successful survivors of natural selection in the Sierra Nevada
environment.

The second part of this example involves looking at the evolution of horse
color more accurately than before (the second science project).The color gene
in horses has been mapped rather thoroughly.To understand how the new cost
function works, we must touch the surface of the color genes in a brief
overview. There are more known genes than we will cover, but for the sake of
brevity we will only do a few of the more common ones.

White is a dominant gene. However, there is a twist. If a horse has two pos-
itive white genes, then it is called lethal white because a few days after birth
the foal dies. The abbreviation for the white gene is W for the positive form
and w for the negative. Gray is also a dominant color, so even if one gene is
positive for gray the horse will be gray. Gray is shown by the abbreviation of
G (positive) and g (negative). However, the white gene holds priority. If the
horse has the positive white gene, then it cannot be gray. Black and red are
determined by a single gene. If the black/red gene is EE or Ee (at least one

Figure 4.20 Wild horses near Reno, Nevada.
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positive form), then the horse can form black pigment. However, if it is ee
(double negative), then the horse will be red, also known as chestnut or sorrel.
Both gray and white hold priority to black/red. If the horse is gray or white,
it cannot be red or black. The cream gene is partially dominant. The red of the
horse is diluted, but the black is not if the genetics is Crcr. However, if the
genetics is CrCr, then the horse will turn entirely milky white and is called
cremello or perlino. The final gene we will consider is the dun gene. The pos-
itive dun gene dilutes both the black and the red pigment on the horse, if the
genetic coding is DD or Dd. The horse can have both the cream and the dun
gene, which merely dilutes the colors more.

In coding the cost function, the dominant genes are coded as 1 while 
the recessive gene is 0. The color genes were ranked depending on the 
probability of that gene appearing; for example, the gray or white gene is less
likely to show up than the black/red gene. Below is an example for the
black/red gene:

%color
if color(ind,:) = = [11]
adapt(3)=0.5; %EE black coloring

elseif color(ind,:) = = [10]
adapt(3)=0.5; %Ee black coloring

elseif color(ind,:) = = [01]
adapt(3)=0.5; %eE black coloring

else
adapt(3)=1.5; %ee red colored

end

As before, the cost function for each horse is computed as the sum of the
products of the adaptation factors of the horse colors with the weighting
factors of the probability of each color chromosome. Some of the genes of the
final population and the interpretation of the resulting colors are shown in
Table 4.6.

The horse described by the fourth row would be buckskin or black because
it was a bay with the cream gene diluting the yellow to a creamy color, or black

TABLE 4.6 Horses of Final Population of Color Study

Coding Resulting Color

00/00/01/00/00 Bay or black
11/01/11/01/10 Lethal white
00/10/01/00/01 Gray
00/00/01/10/00 Buckskin or black
00/00/11/00/11 Grula or bay dun



because the cream gene has no affect on black pigment. The fifth row horse
has black pigment that is diluted, making a grula, or it could have been a bay
whose color was diluted, resulting in a bay dun horse. The most common color
found when running the program was red or red with black pigment, which is
the most common color found naturally.

4.5 SUMMARY

We’ve shown a variety of applications of the GA.Although the selections were
mostly nontechnical, one can imagine technical counterparts. You might think
of some interesting applications of the GA too. These problems were solved
using the simple GAs introduced in Chapters 2 and 3. The next chapter intro-
duces some analysis of GAs and some fine points for tuning the algorithms
for best performance. Many real world problems have very complex models
with cost functions that are time-consuming to evaluate. Some of those sorts
of problems are included in Chapter 6. Finding the optimum population sizes,
mutation rates, and other GA parameters becomes extremely important, the
subject of Chapter 5.
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CHAPTER 5

An Added Level of Sophistication

95

Now that we have introduced the GA and discussed in detail the workings of
both the binary and the continuous GA, it is time to look at some of the tricks
of the trade. At times there may be a cost function that is difficult or expen-
sive to evaluate. Other times we may notice that one crossover technique is
preferable. Deciding on the optimum population size is a controversial subject.
How do we decide when the GA is done? Are there better ways to execute
the genetic operators—crossover and mutation? Can a GA deal with prob-
lems that require a specific ordering of the solution? Although there are not
always clear-cut solutions to all of these questions, we discuss possible answers
in this chapter. We give hints and strategies on running a GA as well as some
useful additions to the codes. We discuss how to implement GAs on parallel
machines. The literature is full of other helpful ideas that can be applied to a
plethora of problems.

5.1 HANDLING EXPENSIVE COST FUNCTIONS

Sometimes the cost function is extremely complicated and time-consuming to
evaluate. As a result some care must be taken to minimize the number of cost
function evaluations. One step toward reducing the number of function eval-
uations is to ensure that identical chromosomes are not evaluated more than
once. There are several approaches to avoiding twins. First, the initial popula-
tion can be created with no two chromosomes alike. Generally, this is only 
a problem for the binary GA, since the continuous GA has very low odds 
of generating identical random variables in two different chromosomes.
However, checking the random population for repetitions is time-consuming
in itself. Fortunately there are more efficient approaches. One approach is to
begin each chromosome with a different pattern. To illustrate, consider an
initial population of eight chromosomes:

Practical Genetic Algorithms, Second Edition, by Randy L. Haupt and Sue Ellen Haupt.
ISBN 0-471-45565-2 Copyright © 2004 John Wiley & Sons, Inc.



Observe that the first 3 bits are uniquely prescribed, so each chromosome is
guaranteed to be different from all others in the population. Perhaps this
approach is not the best, since it only guarantees that the first gene or so is
different. A variation is to prescribe some other combination of bits. For
example, if the chromosomes are three genes made up of 3 bits each, the first
(or some other) bit in each gene could be set, as in

Either approach guarantees an initial population of unique chromosomes 
but doesn’t ensure that identical chromosomes are not evaluated in later 
generations.

Some GA users advocate populations with all unique members
(Michalewicz, 1992). New members of the population (offspring or mutated
chromosomes) are checked against the chromosomes in the current popula-
tion. If the new chromosome is a duplicate, then it is discarded. This approach
requires searching the population for each new member. Searching the popu-
lation for identical twins is only worth the effort if the cost function evalua-
tion takes longer than the population search. A new generation consists of
nonmutated parents, mutated parents, offspring, and mutated offspring. If
there is an identical chromosome that already has an associated cost, then this
cost is assigned to the new chromosome. Otherwise, the cost must be calcu-
lated from the cost function. An alternative is to not allow identical chromo-
somes to mate, therefore saving some computer time while helping maintain
diversity in the population.
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Another way to reduce the number of cost function evaluations is to 
only evaluate the costs of offspring of mutated chromosomes. Nonmutated
parents already have an associated cost, so they don’t have to be evaluated
again. The simplicity of the approach suggests that it should be included in
every GA whether the cost function is time-consuming to calculate or not.
Also the cost of a chromosome with multiple mutations needs only one 
evaluation.

A third approach keeps track of every chromosome and cost calculated
over all the generations. Any newborn chromosome is compared with other
chromosomes on the master list. If it has a twin in the big list, then the cost of
that twin is assigned to the chromosome, thus saving the computation of 
the cost. This approach is the most drastic, being reserved for the most diffi-
cult to evaluate cost functions, because the big list must be searched every 
generation.

There are some other interesting tricks to play with complicated cost func-
tions. One technique is to find a way to simplify the cost function for the bulk
of the runs. This approach is akin to doing an initial calculation on a coarse
grid, then fine-tuning it on a much finer grid. Here we merely define a simpler
or lower order cost function in the initial generations and increase the cost
function accuracy as the GA progresses through the generations. The lower
order model takes less time to calculate and can get the algorithm into the
ballpark of the solution.This approach proved very successful in Haupt (1995).
In this case collocation was done at only one-fifth of the grid points. Thus 
a matrix on the order of 100 ¥ 100 was used in the early generations, while 
a matrix on the order of 500 ¥ 500 was used in the final generations. Another
approach is to use the GA to find the valley of the global minimum, then 
enlist the help of a fast local optimizer to find the bottom of the valley. This
hybrid method only works if the local optimizer can be applied to the cost
function.

So we have seen that there are a variety of methods to save computer time
by minimizing the number of evaluations of the cost function. Just be careful
that the method does not require more time for searching than it saves in cost
function evaluations. Most of the cost functions presented in this book take
little computer time to evaluate, so repeated evaluation of the same chromo-
some has little impact on speed.

5.2 MULTIPLE OBJECTIVE OPTIMIZATION

In many applications the cost function has multiple, often times conflicting,
objectives. Let’s take a look an example of a multiobjective optimization
(MOO?) problem. Suppose a couple is looking for the ideal place to live. One
is from Montana and the other is from Florida, so they have slightly different
ideas of what is ideal. The two cost functions are approximately described by
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(5.1)

where

f1 = spouse#1 cost
f2 = spouse#2 cost
x1 = average temperature
x2 = distance from spouse#1 family
x3 = cost of living
x4 = size of city

1 £ xn £ 2

Clearly, this couple is not in agreement. They have reasonable agreement on
cost of living but have much different views on the other variables.The empha-
sis they place on each variable is indicated by the size and sign of the variable
exponent.

There is no single best solution to (5.1). Plotting f1 against f2 for various
values of x results in Figure 5.1. The point that is the minimum of each inde-
pendent function (min{f1}, min{f2}) is outside the feasible region (set of all pos-
sible points that satisfy the constraints) in the plot. The set of points that
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Figure 5.1 Solutions to the MOO problem in (5.1).The Pareto front is the line formed
by the optimal solutions. The point formed by the minimum of both functions sepa-
rately is labeled.



bounds the bottom of the feasible region is known as the Pareto front. A line
connects the points on the Pareto front in Figure 5.1. In the next two subsec-
tions we will discuss two approaches to MOO: weighted cost functions and
finding the Pareto front.

5.2.1 Sum of Weighted Cost Functions

The most straightforward approach to MOO is to weight each function and
add them together.

(5.2)

where

fn cost function n and 0 £ fn £ 1

wn weighting factor and 

The problem with this method is determining appropriate values of wn. Dif-
ferent weights produce different costs for the same fn. In the example these
weights are multiplied by the cost value and added together to obtain a single
scalar value that the GA minimizes. This approach requires assumptions on
the relative worth of the cost functions prior to running the GA.

Implementing this MOO approach in a GA only requires modifying the
cost function to fit the form of (5.2) and does not require any modification to
the GA. Thus (5.1) becomes

(5.3)

This approach is not computationally intensive and results in a single best solu-
tion based on the assigned weights.

5.2.2 Pareto Optimization

In MOO there is usually no single solution that is optimum with respect to all
objectives. Consequently there are a set of optimal solutions, known as Pareto-
optimal solutions, noninferior solutions, or effective solutions. Without addi-
tional information, all these solutions are equally satisfactory. The goal of
MOO is to find as many of these solutions as possible. If reallocation of
resources cannot improve one cost without raising another cost, then the solu-
tion is Pareto optimal.

A Pareto GA returns a population with many members on the Pareto front.
The population is ordered based on dominance. Solution A dominates solu-

cost wf w f= + -( )1 21
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n

N

=
=
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tion B if A has a lower cost than B for at least one of the objective functions
and is not worse with respect to the remaining objective functions. In other
words, x1 dominates x2 if

(5.4)

or

(5.5)

A solution is Pareto optimal if no other solution dominates that solution with
respect to the cost functions. A solution is nondominated if no solution can be
found that dominates it. Once this set of solutions is found, then the user can
select a single solution based on various postoptimization trade-offs rather
than weighting the costs. One way of finding the Pareto front is to run a GA
for many different combinations of the cost function weights in (5.2). Each
optimal solution is on the Pareto front. This approach requires too many runs
to estimate the Pareto set.

David Schaffer first implemented a multi-objective evolutionary algorithm
called the vector-evaluated GA or VEGA in 1984 (Schaffer, 1984). His algo-
rithm started off fine but tended to converge to a single solution. To prevent
convergence to a single solution, Goldberg and Richardson (1987) suggested
using a nondominated sorting procedure coupled with a niching strategy called
sharing. Sharing takes into account that individuals in the same niche must
share the available resources. This concept is integrated into the Pareto GA
by increasing the cost of chromosomes as a function of their distance from
each other. Closely grouped chromosomes will find their costs increased more
than chromosomes that are spaced far apart.

The multi-objective GA (MOGA) (Fonesca and Flemming, 1993) starts by
finding all nondominated chromosomes of a population and gives them a rank
of one. These chromosomes are removed from the population. Next all 
the nondominated chromosomes of this smaller population are found and
assigned a rank of two. This process continues until all the chromosomes are
assigned a rank. The largest rank will be less than or equal to the size of the
population. Usually there are many solutions that have the same rank. The
selection procedure uses the chromosome ranking to determine the mating
pool. MOGA also uses niching on the cost to distribute the population over
the Pareto-optimal region.

A nondominated sorting GA (NSGA) ranks chromosomes in the same
manner as MOGA. The NSGA algorithm then calculates a uniqueness value.
This uniqueness value is related to the distance between each solution and its
two closest neighbors. Distance may be calculated from the variable values or
the associated costs. The resulting values are scaled between 0 and 1 and sub-
tracted from the cost. A newer version (NSGA-II) improves the NSGA algo-
rithm in a few ways:

f x f x f x f x1 1 1 2 2 1 2 2( ) £ ( ) ( ) < ( )and

f x f x f x f x1 1 1 2 2 1 2 2( ) < ( ) ( ) £ ( )and
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• Reduces the computational complexity of the nondominated sorting.
• Introduces elitism.
• Replaces sharing with crowded-comparison to reduce computations and

the need for a user-defined sharing parameter.

Details on NSGA-II can be found in Deb et al. (2002).
The Pareto GA introduced here works with two cost functions. It can be

easily modified to work with more.A Pareto GA needs a large population size
to work well, since it is trying to define the Pareto front. Consequently we only
include tournament selection in the GA. Figure 5.2 shows a flowchart of this
Pareto GA. The GA used to find the Pareto front for (5.1) had Npop = 500, dis-
cards 50% of the population, m = 0.1, and tournament selection. Figure 5.3 
displays the final population.Those chromosomes on the Pareto front are con-
nected by a line. Although not perfect, the GA did find a very reasonable
approximation to the Pareto front. This approach allows an easier way to
tradeoff the infinite number of optimal solutions to the MOO problem.

A study was done to compare the performance of various MOO algorithms
(Zitzler and Thiele, 1999). It compared the VEGA, NSGA, niched Pareto GA,
the weighted-sum approach, and their newly proposed strength Pareto ap-
proach (SPEA). They found SPEA to be best on various runs with the knap-
sack problem. They found VEGA and NSGA to be the next best performers
with VEGA having a slight advantage.

5.3 HYBRID GA

A hybrid GA combines the power of the GA with the speed of a local 
optimizer. The GA excels at gravitating toward the global minimum. It is not
especially fast at finding the minimum when in a locally quadratic region.
Thus the GA finds the region of the optimum, and then the local optimizer
takes over to find the minimum. Hybrid GA can take one of the following
forms:

1. Running a GA until it slows down, then letting a local optimizer take
over. Hopefully the GA is very close to the global minimum.

2. Seeding the GA population with some local minima found from random
starting points in the population.

3. Every so many iterations, running a local optimizer on the best solution
or the best few solutions and adding the resulting chromosomes to the
population.

The continuous GA will easily couple to a local optimizer, since local opti-
mizers use continuous variables. Some authors have even used a micro GA
(GA with small population) as the local optimizer (Kazarlis et al., 2001).
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Figure 5.2 Flowchart of the Pareto GA.

As an example we demonstrate finding the minimum of (1.1) using both a
continuous GA and a hybrid GA/Nelder-Mead downhill simplex algorithm.
The GA used for the analysis has a population size of 16 and a mutation rate
of 0.2. Convergence results appear in Figure 5.4, averaged over 200 indepen-
dent random runs.The dashed line for the GA and the solid line for the hybrid
GA are not identical prior to the start of the local optimizer due to the random
nature of both algorithms. For the hybrid GA, the Nelder-Mead algorithm



kicks in after 458 function evaluations. Generally, the local optimizer begins
its job when the GA shows little improvement after many generations. The
local optimizer uses the best chromosome in the population as its starting
point. As can be seen from the graph, the local optimizer finishes the job in a
fraction of the time that it takes the GA. We heartily endorse the use of the
hybrid GA.
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Figure 5.3 Final population and Pareto front found by the GA.

Figure 5.4 On the average the hybrid GA finds the minimum in many fewer function
calls than the GA by itself.



5.4 GRAY CODES

Ordinary binary number representation of the variable values may slow con-
vergence of a GA. Consider the following example in which the crossover
point for two parents falls in the middle of a gene that lies in the middle of
the parent chromosomes:

The decoded gene appears at the far right-hand side of the equality. Crossover
splits the genes as indicated.The offspring and associated values resulting from
a crossover point between bits three and four are given by

By definition, the parents are some of the better chromosomes. This mating
resulted in offspring that have diverging integer values from the parents. The
variables of the genes that are split by the crossover operation in the above
examples have decimal representations of 128 and 127. Note that the variable
representations and, most likely, the costs are very close, but the binary rep-
resentations are exactly opposite. Consequently the offspring that result from
the parents are quite different. In this case the variable values change to 159
and 96. The variable values should be converging, but they are not. This
example is extreme, but not unlikely. Increasing the number of bits in the vari-
able representation magnifies the problem (Haupt, 1996).

One way to avoid this problem is to encode the variable values using a 
Gray code. The Gray code redefines the binary numbers so that consecutive
numbers have a Hamming distance of one (Taub and Shilling, 1986).
Hamming distance is defined as the number of bits by which two chro-
mosomes differ. Reconsider the previous example using a Gray code in place
of binary numbers. If we define the binary coding [01000000] to mean the
number 127 and [11000000] to denote 128, then the problem of crossover
becomes

offspring
offspring

1

2
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01100000 96

= ◊ ◊ ◊ ◊ ◊ ◊[ ] = ◊ ◊ ◊ ◊ ◊ ◊[ ]
= ◊ ◊ ◊ ◊ ◊ ◊[ ] = ◊ ◊ ◊ ◊ ◊ ◊[ ]

parent

parent
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crossover
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One gene in the chromosome is split by the crossover operation. The offspring
resulting from a crossover point between bits three and four are given by

Any crossover point using the binary parents results in different offspring.
Only one possible crossover point results in different offspring with the Gray
code. By definition, the parents are good solutions. Thus we would expect 
the offspring to be good solutions too—which occurs when a Gray code is
used.

A Gray code is easy to implement. Converting a binary code to a Gray code
is done by the process diagrammed in Figure 5.5. In that figure the most sig-
nificant bit (MSB) is at the top and the least significant bit (LSB) is at the
bottom. The binary bits on the left are put through the exclusive OR (XOR)
operation; that is, if both bits are the same, it produces a 0, and if they are dif-
ferent, a 1 is output. The converse of converting a Gray code back to a binary
code is accomplished using the inverse process shown in Figure 5.6. Table 5.1
lists the binary and Gray codes for the integers 0 through 7. Note that the
Hamming distance is one for every adjacent integer in the Gray code. On the
other hand, binary numbers have a Hamming distance of three between inte-
gers 3 and 4.

The argument above points out that Gray codes speed convergence time
by keeping the algorithm’s attention on converging toward a solution. Search-
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2
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= ◊ ◊ ◊ ◊ ◊ ◊[ ] = ◊ ◊ ◊ ◊ ◊ ◊[ ]
= ◊ ◊ ◊ ◊ ◊ ◊[ ] = ◊ ◊ ◊ ◊ ◊ ◊[ ]
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= ◊ ◊ ◊ ◊ ◊ ◊[ ]1 2444 3444
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Figure 5.5 Diagram of converting a binary code to a Gray code.



ing for solutions outside the immediate region is primarily relegated to the
mutation function. Our experience indicates that a Gray code slows the GA
due to the conversion process and doesn’t usually help much. Others have
found Gray codes very beneficial (Carulana and Schaffer, 1988; Hinterding et
al., 1989).

5.5 GENE SIZE

In the binary GA the size of the gene or the number of bits used to represent
a variable is important to the accuracy of the solution and the length of time
needed for the GA to converge. Computer users tend to over represent the
true accuracy of variables, because the computer calculates too many digits of
accuracy. For every decimal point of accuracy (in base 10) needed in the solu-
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Figure 5.6 Diagram of converting a Gray code to a binary code.

TABLE 5.1 Binary and Gray Code Representations of
Integers 1 to 7

Integer Binary Code Gray Code

0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100



tion, the variable needs 3.3 bits in the gene. Thus a solution accurate to eight
positions requires 8 ¥ 3.3 = 26.4 or 27 bits in the gene. If there are 10 variables,
then a chromosome has 270 bits. A long gene slows convergence of the GA.
Lesson: Only represent the variables to the minimum accuracy necessary.

In order to precisely estimate the gene size, one must first determine the
acceptable variable accuracy in the form of quantization error. Tolerances of
parts, design specifications, manufacturing limitations, and sufficient numeri-
cal accuracy contribute to determining the minimum quantization level. An
advantage of the binary GA is that it forces the user to determine the 
accuracy of all variables in the optimization process. It is foolish to optimize
a design only to find that the tolerance of a part is too tight. This is like the
government overspecifying tolerances on simple items and driving up the cost.
So be careful to avoid the GA equivalent of the $500 hammer (or was it a
$500 toilet seat?).

5.6 CONVERGENCE

Several researchers have looked at using Markov chains to analyze GA con-
vergence (Nix and Vose, 1992). In general, these studies have relied on a large
population size and low mutation rate for the statistics to work. For instance,
it has been shown that convergence can be achieved above a critical popula-
tion size. Upper bounds have been derived for this critical population size
(Cerf, 1998). Other studies have found a bound for the number of iterations
necessary to find the global optimum with a prespecified level of confidence
(Aytug and Koehler, 1996; Greenhalgh, 2000).

Several proofs exist for the convergence of simulating annealing (SA) algo-
rithms using Markov chains (Hajek, 1988). These algorithms resemble a GA
with one chromosome, no crossover, and a decreasing mutation rate. Conse-
quently many people have tried to use SA proofs for GAs as well (Francois,
1998).

The traditional handwaving proof of convergence for the binary GA is
called the schema theorem (Holland, 1975). A schema is a string of characters
consisting of the binary digits 1 and 0, and an additional “don’t care” charac-
ter, *. Thus the schema 11**00 means the center two digits can be either a 
1 or a 0 and represents the four strings given by 110000, 110100, 111000, and
111100. Figure 5.7 shows a schema hypercube in which three binary digits rep-
resent a corner point, two represent a line, and one represents a face. If **1
results in low costs, then the top face of the cube is a region of interest for the
GA.

The schema theorem says (Goldberg, 1989a):

Short schema with better than average costs occur exponentially more frequently
in the next generation. Schema with costs worse than average occur less fre-
quently in the next generation.
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The idea is that the most fit schema survive to future generations. Following
the best schema throughout the life of the GA provides an estimate of 
the convergence rate (not necessarily to the global minimum) to the best 
chromosome.

Say that a given schema has st representations in the population at gener-
ation t. The number of representations of this schema in generation t + 1 is
given by

(5.6)

where

Pt = probability of the schema being selected to survive to the next 
generation

Qt = probability of the schema being selected to mate
Rt = probability of the schema not being destroyed by crossover or 

mutation

Notice that if Pt(1 + Qt) < 1, then the schema will eventually become extinct.
Surviving schema propagate according to

(5.7)

This formula takes into account that the probability of selection of a schema
can vary from generation to generation. Beginning generations may have a
schema with Pt(1 + Qt) > 1, and for later generations that same schema has
Pt(1 + Qt) < 1. Such a schema does not survive in the long run. An example of
this behavior might be when a GA first latches onto a local minimum, and
later finds the global minimum. Ultimate survival requires the schema to have
Pt(1 + Qt) > 1 for all t.

The schema theorem for proportionate selection and single-point crossover
is (Goldberg, 1989a).

s P P P Q Q Q R R R st t t t t t t+ - - -≥ ( ) +( ) +( ) +( )[ ]( )1 1 1 1 1 1 1 11 1 1. . . . . . . . .

s s P Q Rt t t t t+ = +( )1 1
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Figure 5.7 Hypercube for a schema with one to three binary digits.



(5.8)

where

f�= average fitness of chromosomes containing schema
f̄ = average fitness of population
Pc = probability of crossover
Pm = probability of mutation of a single bit
d = distance between the first and last digit in schema
Nbits = number of possible crossover sites
z = number of defined digits in schema

Many variations to this fundamental theorem appear in the literature.
In practice, when do you stop the algorithm? Well . . . We don’t have a good

answer. This is one of the fuzzy aspects of using the GA. Consider some good
possibilities:

1. Correct answer. This may sound silly and simple. Make sure you check
your best chromosome to see if it is the answer or an acceptable answer
to the problem. If it is, then stop.

2. No improvement. If the GA continues with the same best chromosome
for X number of iterations, then stop. Either the algorithm found a good
answer or it is stuck in a local minimum. Be careful here. Sometimes the
best solution will stay in the same spot for quite a while before a fortu-
itous crossover or mutation generates a better one.

3. Statistics. If the mean or standard deviation of the population’s cost
reaches a certain level, then stop the algorithm. This means the values
are no longer changing.

4. Number of iterations. If the algorithm doesn’t stop for one of the reasons
above, then limit the maximum number of iterations. It can go on forever
unless stopped.

5. Local optimizer. Use a local optimizer. Stop if there is no improvement.

If your algorithm isn’t converging to a good solution, try changing the 
GA parameters like population size and mutation rate. Maybe a different
crossover method or switching from a continuous GA to a binary GA is 
the answer. When the local optimizer finishes, then declare convergence.
We do not advocate the GA as an answer to every problem. Sometimes it 
performs poorly in comparison with other methods. Don’t be afraid to jump
ship to a minimum-seeking algorithm when your GA is sinking. Note that for
many problems, we don’t really need the minimum. Instead, we are happy to
see improvement over previous best results.
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5.7 ALTERNATIVE CROSSOVERS FOR BINARY GAs

In Chapter 2 we only introduced the simple single point crossover for binary
GAs. Single point crossover is similar to the coordinate search method
described in Chapter 1, because the resulting offspring can only occur 
along a line parallel to the coordinate axes. As shown in Figure 5.8, potential
offspring from two parents in a binary GA are limited to a few choices 
parallel to the x- and y-axes of a two-dimensional problem. In this example
each gene has three bits. Similarly the continuous GA using the single point
crossover advocated in Chapter 3 has offspring confined to the lines that form
a rectangle with the two parents on opposite vertices (Figure 5.9). Expanding
the range of b in (3.14) to -0.1 £ b £ 1.1 allows the crossover to go outside the
bounds of the parents as shown in Figure 5.10. Single-point crossover for either
the binary or continuous GA limits offspring along lines that are parallel to
the variable axes.

Other alternatives exist (Eshelman, et al., 1989). A two-point crossover for
the binary GA takes the form

Two random crossover points are selected for the parents. The parents 
then swap the bits between the two crossover points. Alternatively, a random

parent

parent

offspring

offspring

1

2

1

2

001 010110 00110

011 111000 01100

001 111000 00110

011 010110 01100

674 84

124 34

124 34
674 84
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Figure 5.8 The parents (two large dots) and their possible children (smaller dots) for
single-point crossover for a binary GA with 3 bits in the chromosomes.



selection of one of the three parts of the chromosome determines which group
of bits is swapped. Two-point crossover greatly expands the possible offspring
created as shown in Figure 5.11. This figure results from swapping the center
bits between two crossover points. A nearly identical figure results when one
of the three parts is randomly selected for swapping. We suggest only swap-
ping the center bits, because this makes it easier to code.

Another scheme involves three parents and two crossover points (Eiben,
1994):
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Figure 5.9 The parents (two large dots) and their possible children (lines) for single-
point crossover for a continuous GA.

Figure 5.10 The parents (two large dots) and their possible children (lines) for single-
point crossover for a continuous GA with b = 1.1.



(5.9)

A total of 18 offspring can be generated from the three parents. Not all the
offspring need to be generated. For instance, it may be desirable to generate
only two or three. This method of crossover scatters the potential offspring
over a wider area of the cost surface as shown in Figure 5.12.

Uniform crossover looks at each bit in the parents and randomly 
assigns the bit from one parent to one offspring and the bit from the 
other parent to the other offspring. First a random mask is generated.
This mask is a vector of random ones and zeros and is the same length as 
the parents.When the bit in the mask is 0, then the corresponding bit in parent1

is passed to offspring1 and the corresponding bit in parent2 is passed to 
offspring2. When the bit in the mask is 1, then the corresponding bit in parent1

is passed to offspring2 and the corresponding bit in parent2 is passed to 
offspring1:

parent 10101

parent 00000

parent 10011

offspring 00000

offspring 10011

offspring 10101

offspring 10011

offspring 10101

offspring 00000

offspring 10011

1

2

3

1

2

3

4

5

6

18

0101

1111

1100

0101

0101

1111

1111

1100

1100

1111

01010

11100

11001

01010

01010

11100

11100

11001

11001

01010

M M
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Figure 5.11 Two parents and potential offspring from two-point crossover in a binary
GA.



Uniform crossover becomes single-point crossover for a mask that looks like

In the same manner a two-point crossover mask example is

Thus uniform crossover can be considered a generalization of the other
crossover methods. Syswerda (1989) has done extensive experimentation with
uniform crossover. “It was shown that in almost all cases, uniform crossover 
is more effective at combining schemata than either one- or two-point
crossover.” In addition he found that two-point crossover is consistently better
than one-point crossover.

Assume that two parents for a two-dimensional problem are given by

All the bits in these parents are different. As a result the offspring can appear
in many different locations spread throughout the cost surface (Figure 5.13).

0 0 1 0 1 1 0 0 1 1 0 1

1 1 0 1 0 0 1 1 0 0 1 0

[ ]
[ ]

mask = [ ]00000011111000

mask = [ ]00000011111111

parent

parent

mask

offspring

offspring

1

2

1

2

00101011000110

01111100001100

00110110001110

00111101001100

01101010000110
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Figure 5.12 Three parents and potential offspring from three-point crossover in a
binary GA.



If the first, sixth, and seventh bits are the same, then the number of locations
of the offspring are reduced. Consider the following parents:

Figure 5.14 shows all possible offspring of these parents. Since the first and
seventh bits are one, both parents are in the upper right quadrant of the cost

1 0 1 0 1 0 1 0 1 1 0 1

1 1 0 1 0 0 1 1 0 0 1 0

[ ]
[ ]
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Figure 5.13 Two parents and the potential offspring due to uniform crossover with a
binary GA.

Figure 5.14 Two parents and the potential offspring due to uniform crossover with a
binary GA.



surface. Consequently all the offspring lie in the upper right quadrant as well.
No random mask will create an offspring outside of the upper right quadrant.
Now consider two chromosomes that have all the same bits except in three
locations, such as the pair

The number of possible offspring from these parents due to uniform crossover
is very limited, as shown in Figure 5.15.

In early generations, the chromosomes will be very different and uniform
crossover will create offspring that vary all over the cost surface. In later gen-
erations, the chromosomes will be similar and the potential offspring from
uniform crossover will be very limited as with single-point crossover.

It’s possible to produce offspring from a continuous GA that are not along
lines parallel to the variable axes. Offspring can be limited to a line that con-
nects the two parents as shown in Figure 5.16, by multiplying each variable in
the parents by b or -b, where 0 £ b £ 1,

(5.10)

Extending the range of b extends the limits of the offspring. In Chapter 3 only
the variable that was selected had the difference multiplied by a random
number. The spread can be over a large square region having the parents at
two diagonal corners by generating uniform random numbers and performing
the following operations:

offspring parent parent parent

offspring parent parent parent
1 1 1 2

2 2 1 2

= - -( )
= + -( )

b
b

1 0 0 0 1 0 1 0 1 1 0 1

1 1 0 0 1 0 1 1 0 1 0 1

[ ]
[ ]
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Figure 5.15 Two parents and the potential offspring due to uniform crossover with a
binary GA.



(5.11)

where bn are independent uniform random numbers. Unlike in (5.10), the dif-
ference between each variable is multiplied by a different uniform random
number. Figure 5.17 shows the region containing all possible offspring from
this operation. Increasing the range of the bn increases the square area of pos-
sible offspring.

offspring parent p p p p p p

offspring parent p p p p p p
m d m d Nvar mN dN

m d m d Nvar mN dN

var var

var var

1 1 1 1 1 2 2 2

2 2 1 1 1 2 2 2

= - -( ) -( ) -( )[ ]
= + -( ) -( ) -( )[ ]

b b b
b b b

, , . . . ,

, , . . . ,
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Figure 5.16 Two parents and possible offspring using one random number for b in
the continuous GA.

Figure 5.17 Two parents and possible offspring using two independent random
numbers for b in the continuous GA.
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One can also vary how many of the Nkeep chromosomes become parents.
The crossover rate (Xrate) determines the number of chromosomes that enter
the mating pool:

`
(5.12)

High crossover rates introduce many new chromosomes into the population.
If Xrate is too high, good building blocks don’t have the opportunity to accu-
mulate within a single chromosome. A low Xrate, on the other hand, doesn’t
produce a sufficient number of new offspring.

The preceding schemes provide alternative implementations of crossover.
Of course, there are many other possibilities. Feel free to use your imagina-
tion to invent other methods. Just remember, the goal of the crossover oper-
ator is to pass on desirable traits to the next generation. A crossover operator
that is too fancy may destroy desirable schema and slow convergence.

5.8 POPULATION

Deciding on the population composition is very difficult. We’ll discuss popu-
lation size in Section 5.11. Here we look at other aspects of the population,
such as sampling, chromosome age, and size variations.

How should the initial population sample the cost surface? In order to
better picture the sampling process, let’s first look at a population size of 16
for a two-variable cost function. One option is to start with a population that
uniformly samples the cost surface (Figure 5.18a). Sometimes a random pop-
ulation results in oversampling of some regions and sparse sampling in others
(Figure 5.18b). Uniform random number generators produce uniform samples
when the population size is large. Another alternative is to randomly gener-
ate half the chromosomes, and then the second half is the complement of the
first half (Figure 5.18c). This approach ensures diversity by requiring every bit
to assume both a one and a zero within the population. An example of apply-
ing complementary sampling is

Helping the algorithm adequately sample the cost surface in the early stages
may reduce convergence time and prevent premature convergence in a local

random

complement
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minimum. Using the random sampling methods can produce some large gaps
in the sampling of the cost function.

Changing the population size from generation to generation is another vari-
ation that we haven’t explored and yet is very common in nature. Another
intriguing biological model is allowing a chromosome to age (Michalewicz,
1992). A chromosome’s age equals the number of generations that it survives.
More fit chromosomes stay alive longer than less fit chromosomes. Such a
strategy allows the population size to vary from generation to generation,
depending on the number of chromosome deaths. Michalewicz lists three pos-
sibilities of adding a lifetime to the chromosomes: proportional, linear, and
bilinear.Their definitions are presented inTable 5.2.The variables are defined as

• lifemin = minimum lifetime
• lifemax = maximum lifetime

• h = -( )1
2

life lifemax min
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Figure 5.18 Plots of possible sampling methods with 16 samples.

a. uniform sampling b. random sampling

c. complementary sampling
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• costmin = minimum cost of a chromosome in the population
• costmax = maximum cost of a chromosome in the population
• E{cost} = expected value of the cost vector

He found that the varying population size outperformed the constant pop-
ulation size GA for the cost functions shown in Table 5.3. Results consisted of
averaging the minimum cost and number of function evaluations over 20 inde-
pendent runs. The linear strategy has the best average minimum cost but the
highest number of function evaluations. At the other extreme the bilinear
strategy has the worst average minimum cost but the smallest number of func-
tion evaluations. The proportional strategy came in the middle with a medium
average minimum cost and medium number of function evaluations.

Will seeding the population with some possible good guesses speed con-
vergence? Sometimes.This question is natural, since some traditional methods
require a good first guess to get a good solution. If the guess is very good, the
algorithm quickly finds the solution. If the guess is not so good, then the algo-
rithm chases after a local minimum and takes time to find its way out. Most
iterative schemes have a similar problem with initial first guesses (Haupt,
1987). If you don’t know much about the expected best solution (which is
usually the case), forget about seeding the population. Another problem with
seeding is that the time spent looking for a good seed can oftentimes be spent
running the GA. If you have a reasonable guess at the solution, why not use
a local optimizer to begin with? We’re not against seeding a GA—we some-
times do it ourselves—we’re just cautious. Others have not found stunning
results with seeding, either (Booker, 1987; Liepens et al., 1990; Cantu-Paz and
Goldberg, 2003).

As an example, consider seeding a continuous GA with a population size
of 16 and mutation rate of 0.20 for finding the minimum of (1.1). A carefully
selected seed replaces one member of the initial population. The first seed is
in the bowl of the global minimum at (x, y) = (8.2, 8.0).A local optimizer easily
finds the global minimum from this point, so we might suspect that the GA
will converge faster from here. Table 5.4 shows the average number of func-
tion evaluations required to reach an average minimum value when the GA
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TABLE 5.3 Functions Used by Michalewicz to Test
the Performance of a GA that has Chromosomes with a
Life Span

Number Function Limits

1 -x sin(10px) + 1 -2.0 £ x £ 1.0
2 integer(8x)/8 0.0 £ x £ 1.0
3 xsgn(x) -1.0 £ x £ 2.0

4 -100 £ x £ 1000 5
0 5

1 0 001

2 2 2

2 2 2.
sin .

.
+

+ -
+ +( )( )

x y

x y
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TABLE 5.4 Results from Seeding a GA

Average Number
Seed Average Final Result of Function Calls

(x, y) = (8.2, 8.0) -18.489 700
(x, y) = (8.5, 5.0) -18.486 709
No seed -18.484 697

is evaluated using 3000 independent random runs. Compare these results with
seeding the algorithm with a point in the bowl of an adjacent local minimum,
(x, y) = (8.5, 5.0) and no seeding at all. The differences between these
approaches are insignificant as shown in Table 5.4. Our advice: Don’t waste
your time looking for good first guesses.

5.9 MUTATION

When reevaluating the implementation of the mutation operator, two issues
come to mind: type of mutation and rate of mutation. How severe should the
mutation be? Changing a single bit in a gene can change a variable value by
almost 50%. The expected value of a mutated gene that represents a variable 

between 0 and 1 to N bit accuracy is 1/N . Thus a gene with 4 bits can

expect a mutation (m = 0.25) to change it by 1–
4
(0.5+0.25+0.125+0.0675)

=0.23563, while a gene with 8 bits can expect two mutations (m = 0.25),

and it changes by .In other

words, mutation has slightly different effects on genes, depending on the bit
representation of the genes.

If one bit of a 12 bit chromosome is mutated, then there are 12 possible
resulting mutants. Figure 5.19 plots a chromosome and its 12 potential mutants
if one bit is mutated. Figure 5.20 is a plot of the same chromosome and all
possible mutants resulting from mutating two bits. Increasing the number of
mutated bits to three enlarges the number of possible mutants, as shown in
Figure 5.21. These figures demonstrate the potential outreach associated with
a high mutation rate. Figure 5.22 shows all the potential mutants due to mutat-
ing one variable in a two variable continuous chromosome. Mutating two con-
tinuous variables can result in a mutant at any point on the graph.

Experiments have been done on varying the mutation rate as the genera-
tions progress. Fogarty studied five variable mutation rate schemes (Fogarty,
1989):

1. Constant low m over all generations.
2. First generation has m = 0.5, and subsequent generations have a low m.
3. Exponentially decreasing m over all generations.
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4. Constant m for all bits.
5. Exponentially decreasing m for bits representing small inverse powers of

2.

Fogarty tested these schemes on a model of an industrial burner in which 
the air inlet valves were set in order to minimize combustion stack loss in 
the common flue. The conclusions indicated that the variable mutation rate
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Figure 5.19 Possible mutants due to a single mutation to a chromosome represented
by 12 bits.

Figure 5.20 Possible mutants due to two mutations to a chromosome represented by
12 bits.



worked better than the constant mutation rate when the initial population was
a matrix of all zeros. When the initial population was a matrix of random bits,
no significant difference between the various mutation rates was noticed. Since
these results were performed on one specific problem, no general conclusions
about a variable mutation rate are possible.

As an example we tested a variable mutation rate for minimizing (1.1).
The continuous GA had a population size of 16. We tried three variations:
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Figure 5.22 Possible results from one mutation to a chromosome in a continuous GA.

Figure 5.21 Possible mutants due to three mutations to a chromosome represented
by 12 bits.



(1) the mutation rate started at 0.2 and decreased by 0.002 each generation,
(2) the mutation rate started at 0 and increased by 0.002 each generation,
and (3) a constant mutation rate of 0.2. All the results were averaged 
over 3000 independent runs. As shown in Table 5.5, the constant mutation 
rate performed slightly better with a constant mutation rate of 0.1 or 0.2 
was chosen. However, a constant mutation rate of 0.05 resulted in not finding
as good of a solution than with either variable rate. More information 
about variable mutation rates can be found in Bäck (1993) and Fogarty 
(1989).

5.10 PERMUTATION PROBLEMS

Sometimes an optimization involves sorting a list or putting things in the right
order.The most famous problem is the traveling salesperson problem in which
a salesperson wants to visit C cities while traveling the least possible distance.
Each city is visited exactly once, so the solution consists of a list of the cities
in the order visited. This particular application is treated in more detail in the
next chapter, but let’s take a look at the problems involved and some possi-
ble solutions. In particular, the standard crossover and mutation operators are
not appropriate, since we must ensure that each city is represented once and
only once.

Let’s start with a simple example of six numbers that must be reordered.
For simplicity, we will use an integer alphabet here although any reasonable
encoding will do. Consider two parent chromosomes of length 6:

parents

parent1 [3 4 6 2 1 5]
parent2 [4 1 5 3 2 6]

A simple crossover between the second and third elements of the parent chro-
mosome vectors produces the offspring
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TABLE 5.5 Results from Constant and Varying Mutation Rates

Average Number
Mutation Rate Average Final Result of Function Calls

Decreasing from 0.2 -18.405 734
Increasing from 0 -18.416 825
Constant = 0.2 -18.484 697
Constant = 0.1 -18.446 737
Constant = 0.05 -18.276 791



simple crossover (incorrect)

offspring1 [3 4 | 5 3 2 6]
offspring2 [4 1 | 6 2 1 5]

Obviously this won’t work, since offspring1 contains two 3s and no 1 while off-
spring2 has two 1s, and no 3. Goldberg (1989a) discusses several possible solu-
tions to this problem, which are briefly summarized here. The first is known as
partially matched crossover (PMX) (Goldberg and Lingle, 1985). In this
method two crossover points are chosen, and we begin by exchanging the
values of the parents between these points. If crossover points are between
elements 1 and 2, and 3 and 4, then string K from parent2 is switched with string
J from parent1:

partially matched crossover (step a)

offspring1A [3 | | 2 1 5]

offspring2A [4 | | 3 2 6]

All values exchanged between parents are shown in bold type. So far we still
have the problem of having doubles of some integers and none of others. The
switched strings, J and K, remain untouched throughout the rest of the pro-
cedure. The original doubles in offspring2A are exchanged for the original
doubles in offspring1A (the original 4 in offspring2A exchanged with the origi-
nal 1 in offspring1A, and the original 6 in offspring2A with the original 5 in 
offspring1A) to obtain the final solution:

partially matched crossover (step b)

offspring1B [3 1 5 2 4 6]
offspring2B [1 4 6 3 2 5]

Each offspring contains part of the initial parent in the same position (unem-
phasized numbers) and includes each integer once and only once.

Order crossover (OX) is somewhat different than PMX. It attempts to
maintain the order of integers as if the chromosome vector were wrapped in
a circle, so the last element is followed by the first element. Thus [1 2 3 4] is
the same as [2 3 4 1]. It begins, like PMX, by choosing two crossover points
and exchanging the integers between them. This time, however, holes are left
(denoted below by X’s) in the spaces where integers are repeated. If the
crossover points are after the second and fourth integers, the first stage leaves
offspring that look like

4 6
k
{

1 5
J

{
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ordered crossover (first stage)

offspring1L [X 4 | | 1 X]

offspring2L [4 1 | | X X]

At this point the holes are pushed to the beginning of the offspring. All inte-
gers that were in those positions are pushed off the left of the chromosome
and wrap around to the end of the offspring. At the same time strings J and
K that were exchanged maintain their positions:

ordered crossover (second stage)

offspring1M [X X 5 3 1 4]
offspring2M [X X 6 2 4 1]

For the final stage the X’s are replaced with strings J and K:

ordered crossover (final stage)

offspring1N [ ]

offspring2N [ ]

OX has the advantage that the relative ordering is preserved, although the
absolute position within the string is not.

The final method discussed by Goldberg (1989a) is the cycle crossover
(CX). In this method the information exchange begins at the left of the string
and the first two digits are exchanged. For our example, this gives

cycle crossover (first step)

offspring1W [4 4 6 2 1 5]
offspring2W [3 1 5 3 2 6]

Now that the first offspring has two 4s, we progress to the second 4 and
exchange with the other offspring to get

cycle crossover (second step)

offspring1X [4 1 6 2 1 5]
offspring2X [3 4 5 3 2 6]

Since there are two 1s in the first offspring, we exchange position 5 with the
second offspring:

5 3 6 2
J k

{ { 4 1

62 5 3
k J
{ { 1 4

6 2
k
{

5 3
J

{
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cycle crossover (third step)

offspring1Y [4 1 6 2 2 5]
offspring2Y [3 4 5 3 1 6]

The next position to exchange is position 4 where there is a repeated 2:

cycle crossover (fourth step)

offspring1Z [4 1 6 3 2 5]
offspring2Z [3 4 5 2 1 6]

At this point we have exchanged the 2 for the 3 and there are no repeated
integers in either string, so the crossover is complete. We see that each off-
spring has exactly one of each digit, and it is in the position of one of the
parents. Comparing the three different methods, we see that each has pro-
duced a different set of offspring, offsprings B, N, and Z. These methods are
compared by Oliver et al. (1987).

What about the mutation operator? If we randomly change one number in
a string, we are left with one integer duplicated and another missing. The sim-
plest solution is to randomly choose a chromosome to mutate, and then ran-
domly choose two positions within that chromosome to exchange. As an
example, if the second and fifth positions are randomly chosen for a mutated
chromosome, it transforms as follows:

So we see that even permutation problems are not an insurmountable
problem for a GA. In the following chapter we demonstrate an application.

5.11 SELECTING GA PARAMETERS

Selecting GA parameters like mutation rate, m, and population size, Npop, is
very difficult due to the many possible variations in the algorithm and cost
function. A GA relies on random number generators for creating the popula-
tion, mating, and mutation. A different random number seed produces differ-
ent results. In addition there are various types of crossovers and mutations, as
well as other possibilities, like chromosome aging and Gray codes. Comparing
all the different options and averaging the results to reduce random variations
for a wide range of cost functions is a daunting task. Plus the results may be
highly dependent on the cost function analyzed.

The first intensive study of GA parameters was done by De Jong (1975) in
his dissertation. His work translated Holland’s theories into practical function

chromosome

chromosome

= [ ]
fl
= [ ]

6 5 3 4

6 5 3 4

1 2

2 1
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optimization. Goldberg (1989a) nicely summarizes the results. De Jong 
used two performance measures for judging the GAs. First, he defined on-line
performance as an average of all costs up to the present generation. It penal-
izes the algorithm for too many poor costs and rewards the algorithm 
for quickly finding where the lowest costs lie. Second, he defined off-line per-
formance as a running average of the best cost found each generation. This
metric doesn’t penalize the algorithm for exploring high cost areas of the 
cost surface. The binary GAs were of six types with an increasing degree of
complexity:

1. A simple GA was used, composed of roulette wheel selection, simple
crossover with random mating, and single bit mutation.

2. Elitism was added.
3. Reproduction was a function of the expected number of offspring of a

chromosome.
4. Numbers 2 and 3 were combined.
5. A crowding factor was added. A small random group from the popula-

tion was selected. The chromosome in that group that most resembles
the offspring was eliminated and replaced by the offspring.

6. Crossovers were made more complex.

Each of these algorithms was tested on five cost functions (shown in Table 5.6)
while varying m, Npop, Xrate, and G, where G is the generation gap and has the
bounds 0 < G £ 1. The generation gap, G, is the fraction of the population that
changes every generation. A generation gap algorithm picks GNpop members
for mating. The GNpop offspring produced replace GNpop chromosomes ran-
domly selected from the population.

De Jong concluded:
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TABLE 5.6 De Jong Test Functions

Number Function Limits

1 -5.12 £ xn £ 5.12

2 100(x1
2 - x2)2 + (1 - x1)2 -2.048 £ xn £ 2.048

3 -5.12 £ xn £ 5.12

4 -1.28 £ xn £ 1.28

5 -65.536 £ xn £ 65.5360 002
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1. Small population size improved initial performance while large popula-
tion size improved long-term performance, 50 £ Npop £ 100.

2. High mutation rate was good for off-line performance, while low muta-
tion rate was good for on-line performance, m = 0.001.

3. Crossover rates should be about Xrate = 0.60.
4. Type of crossover (single point vs. multipoint) made little difference.

A decade later brought significant improvements to computers that led to
the next important study done by Grefenstette (1986). He used a metagenetic
algorithm to optimize the on-line and off-line performance of GAs based on
varying six parameters: Npop, Xrate, m, G, scaling window, and whether or not
elitism is used. A scaling window determines just how a cost is scaled relative
to other costs in the population. The metagenetic algorithm used Npop = 50,
Xrate = 0.6, m = 0.001, G = 1, no scaling, and elitism. These values were chosen
based on past experience.A cost function evaluation for the metagenetic algo-
rithm consisted of a GA run until 5000 cost function evaluations were per-
formed on one of the De Jong test functions and the result normalized relative
to that of a random search algorithm. Each GA in the population evaluated
each of the De Jong test functions.

The second step in this experiment took the 20 best GAs found by the
metaGA and let them tackle each of the five test functions for five indepen-
dent runs. The best GA for on-line performance had Npop = 30, Xrate = 0.95, m
= 0.01, G = 1, scaling of the cost function, and elitism. Grefenstette found that
the off-line performance was worse than that of a random search, indicating
that the GAs tended to prematurely converge on a local minimum. The best
off-line GA had Npop = 80, Xrate = 0.45, m = 0.01, G = 0.9, scaling of the cost
function, and no elitism. He concludes, “The experimental data also suggests
that, while it is possible to optimize GA control parameters, very good per-
formance can be obtained with a range of GA control parameter settings.”

A couple of years after the Grefenstette study, a group reported results on
optimum parameter settings for a binary GA using a Gray code (Schaffer et
al., 1989). Their approach added five more cost functions to the De Jong test
function suite. They had discrete sets of parameter values Npop = 10, 20, 30, 50,
100, 200; m = 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.10; Xrate = 0.05 to 0.95 in incre-
ments of 0.10; and 1 or 2 crossover points) that had a total of 8400 possible
combinations. Each of the 8400 combinations was run with each of the test
functions. Each combination was averaged over 10 independent runs. The GA
terminated after 10,000 function evaluations. These authors found the best on-
line performance resulted for the following parameter settings: Npop = 20 to
30, Xrate = 0.75 to 0.95, m = 0.005 to 0.01, and two-point crossover.

Thomas Bäck has done more recent analyses of mutation rate. He showed
that for the simple counting problem, the optimal mutation rate is 1/Nbits (Bäck
and Schutz, 1993). He later showed that an even quicker convergence can be
obtained by beginning with even larger mutation rates (on the order of 1/2) and
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letting it gradually adapt to the 1/Nbits value (Bäck, 1996a). In a subsequent
work (Bäck, 1996b), he compared this evolutionary GA approach with evo-
lutionary strategies and showed that this adaptation is similar to the self-
adaptation of parameters that characterize evolutionary strategies approaches.

Gao (1998) computed a theoretical upper bound on convergence rates in
terms of population size, encoding length, and mutation probability in the
context of Markhov chain models for a canonical GA. His resulting theorem
showed that the larger the probability of mutation and the smaller the popu-
lation, the faster the GA should converge. However, he discounted these
results as not viable for long-term performance.

Most of these previous studies were done with binary GAs. More people
are discovering the benefits of using continuous GAs, namely that a continu-
ous spectrum of variables can be represented. Our previous work with con-
tinuous GAs (Haupt and Haupt, 1998) devised a simple check to determine
the best population size and mutation rate.The results of the numerical exper-
iments suggest that the best mutation rate for GAs used on the problems pre-
sented (Haupt and Haupt, 2000) lies between 5 and 20% while the population
size should be less than 16.

Parameter settings are sensitive to the cost functions, options in the GAs,
bounds on the parameters, and performance indicators. Consequently differ-
ent studies result in different conclusions about the optimum parameter
values. Davis (1989) recognized this problem and outlined a method of adapt-
ing the parameter settings during a run of a GA (Davis, 1991a). He does this
by including operator performance in the cost. Operator performance is the
cost reduction caused by the operator divided by the number of children
created by the operator.

Traditionally large populations have been used to thoroughly explore com-
plicated cost surfaces. Crossover is then the operator of choice to exploit
promising regions of phase space by combining information from promising
solutions. The role of mutation is somewhat nebulous. As stated by Bäck and
Schutz (1996a), mutation is typically considered as a secondary operator of
little importance. Like us, he found that larger values than typically used are
best for the early stages of a GA run. In one sense, greater exploration is
achieved if the mutation rate is great enough to take the gene into a different
region of solution space. Yet a mutation in the less critical genes may result in
further exploiting the current region. Perhaps the larger mutation rates com-
bined with the lower population sizes act to cover both properties without the
large number of function evaluations required for large population sizes. Iter-
ative approaches where mutation rate varies over the course of a run such as
done by Bäck (1996a, b) and Davis (1991b) are likely optimal, but they require
a more complex approach and algorithm. Note that when continuous vari-
ables, small population sizes, large mutation rates, and an adaptive mutation
rate are used, the algorithm begins to lurk more in the realms of what has been
traditionally referred to as evolutionary strategies. We feel that names are a
moot point and choose to do what we find works best for a problem. In par-
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ticular, we prefer the engineering approach of switching to a different opti-
mization algorithm once the global well is found, since at that point the more
traditional optimization algorithms become more efficient.

We’ve done extensive comparisons of GA performance as a function of
population size and mutation rate, as well as some other parameters. The cri-
terion was finding a correct answer with as few evaluations of the cost func-
tion as possible. Our conclusions are that the crossover rate, method of
selection (roulette wheel or tournament), and type of crossover are not of
much importance. Population size and mutation rate, however, have a signifi-
cant impact on the ability of the GA to find an acceptable minimum. Conse-
quently the examples presented here average GA optimization of several
functions with various population sizes and mutation rates.

Table 5.7 lists five functions used to test the binary and continuous GAs.
The GAs were run 200 independent times for 21 different population sizes
and 21 different mutation rates to find the average number of function calls
needed to arrive at an acceptable solution.The binary GA used a 12 bit encod-
ing for each variable. Population size varied from 8 to 88 in increments of 4.
Mutation rate varied from 0.01 to 0.41 in increments of 0.02. Thus 441 differ-
ent combinations were tried on 200 independent runs each and the results
averaged. The absolute best Npop and m for the different functions are shown
in columns 4 and 5 of Table 5.7. These numbers don’t tell the whole story,
though. For instance, consider the first function optimized with the continu-
ous GA. Figure 5.23 is a three-dimensional plot of the average number of func-
tion calls needed to reach a level below -18.5 for the different values of
population size and mutation rate. A corresponding shaded two-dimensional
plot appears in Figure 5.24 with the five best values of Npop and m marked by
white circles. This GA works best (optimizes quickest) with small population
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TABLE 5.7 The Optimum Population Size and Mutation Rate Found after 200
Independent Runs of the GA

Test Function Type of GA Npop m Crossover

1 x sin(4x) + 1.1y sin(2y) Continuous 20 0.27 (3.11)
Binary 8 0.11 Uniform
Binary 8 0.11 Single point

2 y sin(4x) + 1.1x sin(2y) Continuous 12 0.23 (3.11)
Binary 16 0.09 Uniform

3 100(x2 - 10x - y + 30)2 + (6 - x)2 Continuous 16 0.37 (3.11)
Binary 8 0.25 Uniform

4 Continuous 8 0.05 (3.11)
Binary 8 0.03 Uniform

5 (y - 5)(x - 5)2 + (5 - x)(y - 5)2 Continuous 8 0.33 (3.11)
Binary 8 0.07 Uniform

vn
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sizes and relatively high mutation rates. As the population size increases, the
optimal mutation rate decreases.

Figure 5.25 shows two-dimensional intensity plots of the average number
of function calls needed to get close to the minimum. Dark means a low
number of function calls (desirable), whereas light means a large number of
function calls (undesirable). The five small white circles on each plot are the
five best population size/mutation rate combinations. These examples clearly
indicate that a small population size is desirable for both the continuous and
binary GAs. In general, the continuous GA uses a higher mutation rate. Also
the quadratic surface problem (test function 4) uses the lowest mutation rate.
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Figure 5.23 Average number of function calls needed to reach a level below -18.5 for
the different values of population size and mutation rate when optimizing (1.1).

Figure 5.24 Average number of function calls needed to reach a level below -18.5 for
the different values of population size and mutation rate when optimizing (1.1). The
five best combinations are shown by small circles.
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Figure 5.25 Mean number of function calls needed to find optimum. The five best are
denoted by white circles.
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Figure 5.25 Continued

When the population sizes are as small as found here, tournament selection
offers no advantage to roulette wheel selection, so an evaluation of the trade-
off between these selection operators was not done. Selecting a small popula-
tion size takes a very small amount of computer time. When doing the
calculations for Table 5.7, the GA runs with large population size took at least
10% longer to run than the GAs with small population sizes for a fixed number
of function calls.This difference can be attributed to the weighting and ranking
in the selection operator.

These results are not entirely alone. They are confirmed by our own prior
results (Haupt and Haupt, 2000) as well as those of Bäck (1993, 1996a,b) and
predicted by the theory of Gao (1998).Also De Jong (1975) found that a small
population size and high mutation rate worked best during the initial gener-
ations when off-line performance was evaluated. This is consistent with the
results here because the algorithm is stopped when a prescribed minimum in
the valley of the true minimum is found. If the GA were then used to pass
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results to a local optimizer, the GA needs only to work on the problem a short
time.

Although these conclusions strictly apply to only the problems presented,
in practice we have found many other problems where similar principles
applied. No attempt has been made to thoroughly investigate all possible com-
binations of parameters.We chose to concentrate on population size and muta-
tion rate after our own experience with optimizing GA performance.We make
no claims that this is a definitive analysis: our purpose is merely to suggest that
future GA practitioners consider a wider range of possible combinations of
population size and mutation rate.

In this section we primarily discussed GA parameter tuning or finding the
best parameters that remain constant throughout the run. Another approach
is parameter control in which the GA parameters change with time. GA para-
meter control classifications include (Eiben et al., 1999):

• Deterministic parameter control. The GA parameters change according
to some deterministic rule.

• Adaptive parameter control. The GA parameters change according to
some feedback provided by the algorithm.

• Self-adaptive parameter control. The GA parameters are encoded 
into the chromosomes and are optimized simultaneously with the cost
function.

5.12 CONTINUOUS VERSUS BINARY GA

Perhaps a burning question on your mind is whether the binary or continuous
GA is better. Our experience puts our vote with the continuous GA. Con-
verting variable values to binary numbers and worrying about the number of
bits needed to represent a variable are unnecessary. Continuous GAs also are
more compatible with other optimization algorithms, thus making them easier
to combine or hybridize.

We are not the only ones to reach this conclusion. After extensive com-
parisons between binary and continuous GAs, Michalewicz (1992) says, “The
conducted experiments indicate that the floating point representation is faster,
more consistent from run to run, and provides a higher precision (especially
with large domains where binary coding would require prohibitively long rep-
resentations).” The inventors of evolutionary computations in Europe have
long recognized the value of using continuous variables in the algorithm.

Figure 5.26 displays the number of function evaluations needed to find the
optimum for (1.1). These results were averaged 3000 times for the binary and
continuous GAs. Both GAs had a population size of 8, mutation rate of 0.15,
and used tournament selection. The variables in the binary GA were repre-
sented by 20 bits each. In this case the continuous GA outperformed the
binary GA.
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Figure 5.26 Convergence plot of binary GA versus continuous GA for (1.1).

In any event, both versions of the GA are powerful. It is not difficult to find
advocates for each.

5.13 MESSY GENETIC ALGORITHMS

The messy GA (mGA) was invented to speed convergence of a GA (Gold-
berg, et al., 1989c). This type of GA has variable length chromosomes and
genes that are position independent. Figure 5.27 shows a chromosome with six
binary numbers. A messy GA assigns a position number to each binary digit.
The ordered pair represents.

(gene position in chromosome, bit value)

Thus the genes are not position dependent in a chromosome. A chromosome
also does not have a fixed length. Figure 5.28 shows two messy chromosomes,
both having less than six bits. The first chromosome is over specified, because
it has two values for gene position 3. The second chromosome is underspeci-
fied because it has values for genes 1, 4, and 6 but not for genes 2, 3, and 5.

Figure 5.27 Position information is assigned to each bit in the mGA.
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Figure 5.28 Crossover with the mGA.

The first phase of a mGA is called the primordial phase. This part begins
with an initial population that has all possible building blocks in the popula-
tion of a specified length. Next the GA runs for a few generations using only
crossover. Half the chromosomes are discarded every few generations. The
juxtapositional phase then invokes other genetic operations until an accept-
able solution is found.

Two special mGA operators used in the juxtaposition phase are cutting and
splicing. A random cut is made in the chromosomes (the cut sections are
labeled A, B, C, and D). Two sections are randomly selected (they cannot be
the same) and spliced together to form new chromosomes. Figure 5.29 shows
four out of the 12 possible resulting chromosomes. They vary in length. Gold-
berg reported that results on a number of difficult deceptive test functions
have been encouraging. The mGA has found use in many different applica-
tions and are explained in detail in Knjazew (2002).

5.14 PARALLEL GENETIC ALGORITHMS

GAs are tackling increasingly complicated cost functions. Cost functions that
involve complex simulations are becoming more common for engineering
design problems. Such cost functions are very CPU intensive and GAs make
many cost function evaluations along the optimization road. One way of
cutting computer time is to use the recommendations of the previous sections
to minimize the total number of calls to the cost function. Computation time
may still be overwhelming. Fortunately GAs are very amenable to parallel

Figure 5.29 Resulting offspring with some positions having an exact, over, or under
specification.



implementation. The cost function evaluations are independent and can be
done concurrently with very minor changes in code. Such simple adaptations
work quite well for cost functions that take a lot of computer time. However,
for cost functions with moderate to low CPU requirements, communications
between processors use up the speedup, as we will see below. This is because,
for a standard GA, sorting and selection often occur within the full mating
population. Thus parallelizing GAs requires careful consideration of which
operations really must be done with the entire chromosome array versus what
can be done using subpopulations.

5.14.1 Advantages of Parallel GAs

Speedup is the most often cited reason to use a parallel GA. If function eval-
uations can be farmed out to different processors, they can be completed 
concurrently. However, that is not the only motivation for parallelization. As
we will discuss below, there are parallel strategies where groups of chromo-
somes are sent to separate processors to evolve apart from the rest of the 
population. Communication between these “islands” of chromosomes occurs
occasionally. This separation into subpopulations can prevent premature 
convergence by allowing each island to search in different combinations,
preventing a single highly fit individual from dominating the entire popula-
tion. Sometimes multiple solutions can be found for the problem in this
manner. In addition we note that nature uses parallel evolution of subpopu-
lations, yet allows occasional migration between these groups. To the extent
that GAs are patterned after nature, it makes sense to explore this aspect of
evolution.

5.14.2 Strategies for Parallel GAs

So how do you parallelize your code to take best advantage of multiple proces-
sors without becoming so bogged down in communication time between the
processors? There are actually some very good tried and true strategies to help
solve this problem. Much work has been done on analyzing different ways to
parallelize GAs (e.g., Alba and Tomassini, 2002; Nowastawski and Poli, 1999;
Watson, 1999; Gordon and Whitley, 1993). Which method works best depends
on the nature of the problem and the architecture of the parallel machine.Ter-
minology of the various methods is not yet standardized, but we attempt to
give a sampling of the most successful methods being used.

The simplest method of building a parallel GA is the master–slave algo-
rithm, which is basically a parallel implementation of a standard GA. One
processor is the master and controls communication, sorting, and pairing. It
sends the cost function out to the slave processors for parallel evaluations.This
method is arguably the simplest to program. The disadvantages are that the
master is often left waiting for the results from the slaves, and the algorithm
is only as fast as communication from the slowest node. Since selection occurs
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globally, these algorithms are known as “panmictic” or “micro-grained.” There
are several subclassifications within the master–slave parallel GA, which are
primarily related to the replacement strategy. The generational model is one
extreme: the entire population is replaced with new offspring each generation.
The opposite extreme is the steady state model, where only one or two new
individuals replace less fit parents each generation. In between these extremes
are the generation gap models where some percentage of the population 
is replaced with offspring.This type of algorithm is analogous to using a certain
crossover percentage of the most-fit parents that remain in the population and
mate. Most master–slave algorithms are synchronous: the slave processors
each do the same operation on a subset of data at the same time while 
the master waits for feedback. Such algorithms can experience the bottleneck
effect when one processor holds up progression. An asynchronous
master–slave algorithm is possible. In this case the master begins the selection
step of the algorithm as slave nodes send back their fitness evaluations.
One of the easiest ways to do this is to employ tournament selection on 
the population that has returned from the slaves. A disadvantage of the
master-slave algorithms is that, since they are global in nature, they don’t
include the advantages associated with separate evolution of subpopulations.
Sometimes a single, very fit individual dominates the population from an early
stage.

A second major class of parallel GA divides the population into subpopu-
lations or islands, also referred to as demes. This GA is known as a coarse-
grained, distributed, or island GA. Each processor houses a separate
population of chromosomes that reproduces and is evaluated for fitness apart
from any of the remaining population. The process resembles species evolu-
tion. This model is ideally suited for distributed memory MIMD (multiple
instructions, multiple data) machines, such as the Beowulf clusters that are
becoming prevalent. If there is never any communication between nodes, then
this island model is equivalent to performing many runs of the GA on several
small populations at once. However, there is usually periodic communication
between nodes following the punctuated equilibria theory of evolution. In this
theory some forcing in the species acts to allow change at a quicker rate than
would normally occur without an external input. The forcing in this case is
periodic migration between the subpopulation islands, increasing local diver-
sity. The topology determines connections between islands. Which individuals
migrate can vary. Some algorithms randomly switch members of the subpop-
ulations. Others choose to exchange the most-fit individuals (as recommended
by Cantu Paz, 1999). A migration rate must be chosen to determine how often
individuals migrate to other subpopulations. Synchronous island GAs
exchange members between subpopulations at the same time, typically every
n iterations. On a distributed memory computer, it is more convenient to use
asynchronous migration where each population independently decides when
to send current members and receive new ones. Some algorithms merely
exchange members between populations, while others clone members to allow
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them to evolve in two different subpopulations at once. Another migration
policy (Goodman, et al., 1994) is the injection island GA. It is a strategy spe-
cific to binary GAs where reduced length strings (with a lower resolution of
the encoding) are passed to a different subpopulation to explore a wider range
of the solution space with a lower resolution. The class of island GAs have the
advantages that they are usually faster than the master–slave implementations
and they allow evolution of diverse species at the same time. Exchange of
information between species often allows improvement that would not be seen
otherwise. Even when speed and architecture are not primary factors, these
island algorithms often outperform GAs with a single population (Gordon and
Whitley, 1993).

A third major category of parallel GA is the cellular or fine-grained 
GA. In this case the subpopulation becomes very small, often composed of a
single individual. However, this individual can interact with its neighbors.
One can think of this implementation as each individual being a node on 
a Cartesian grid that can interact with neighboring nodes (see Figure 5.30c).
Defining the neighborhood usually amounts to determining how many 
grid points constitute a neighborhood. A circle is drawn with a designated
radius centered on the individual of interest. In reality, the grid need not 
be Cartesian but can be any convenient topology. The most convenient topol-
ogy is usually one that best uses the architecture of the computer. Nearness 
is defined by the communication distance. This method differs from 
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Figure 5.30 Schematic of three different types of parallel GA algorithms: (a)
master–slave where the population is grouped together, (b) island model with several
subpopulations and migration between them, and (c) cellular model where selection
occurs within neighborhoods.



the master–slave parallel GA by having the genetic operators decentralized.
The characteristics of the best individual diffuse slowly through the grid,
not allowing a single individual to dominate the population at an early stage.
On a SIMD (single instruction, multiple data) computer with a sufficiently 
difficult cost function, the fine-grained GA is a natural implementation
method.

Figure 5.30 depicts the relationship between population members in the
various types of parallel GA implementations. Figure 5.30a is a master–slave
algorithm where there is a single global population. All genetic operators are
performed within the entire population. Only the cost function evaluations are
spread among the parallel nodes. Figure 5.30b is the island GA in which various
subpopulations communicate via migration. The GA operators take place on
separate processors involving only the island members. Finally, Figure 5.30c
shows the cellular GA. In this case each individual is pretty independent, often
on its own processor,and only communicates with its nearest topological neigh-
bors.The GA operators take place only in the neighborhood of the individuals
selected for mating.These three basic classes of GAs can be combined in novel
ways. Variations abound in terms of mating population, migration, distribution
of the genetic operators, and innovative selection methods (Alba and
Tomassini, 2002). As long as computers are evolving new architectures, engi-
neers of GAs will be finding better ways to take advantage of their strengths
while optimizing the use of the GA itself.

5.14.3 Expected Speedup

According to Cantu-Paz and Goldberg (1999) the total execution time per
generation of a parallel GA can be computed as

(5.13)

where

Tf = the time to evaluate the fitness of one chromosome
Tc = the average time to communicate with one processor
P = number of processors
r = parameter dependent on selection and parallelization method

We see that the total execution time is composed of two terms: the first refers
to the time required to evaluate the fitness of the chromosomes and the second
involves the total communication time. The speedup for a given number 
of processors can be computed as T1/Tp, where T1 is the time for a single proces-
sor:

(1.13)T
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P
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That speedup depends on the ratio of the time to compute the fitness relative
to the communication time (Tf/Tc), the number of processors, the population
size, and the variable r, which depends on the details of the code and the 
parallelization technique. Here we use r = 1, which is appropriate for a
master–slave GA application. Figure 5.31 plots the speedup as a function of
the number of processors used for three different Tf/Tc ratios (Tf/Tc = 1, 10,
and 100) for a population size of Npop = 100. Perfect speedup would be the
straight line T1/TP = P. The larger Tf/Tc, the closer we get to perfect speedup.
When communication costs are equal to the cost of evaluating the fitness func-
tion (Tf/Tc = 1), a maximum speedup is reached, and then the time per proces-
sor begins to decrease. Figure 5.32 is the same type of plot with N = 1000. We
see that for a larger population size, the speedup is greater. One can compute
the optimum number of processors to maximize the speedup curve (Popt) by
taking the derivative of (5.13) with respect to P, and setting it to 0 to obtain

(5.14)

Figure 5.33 plots Popt as a function of Tf/Tc for values of N = 16, 100, and 1000.
As expected, the optimal number of processors increases monotonically with
both Npop and Tf/Tc.

There has been further work on the theoretical basis for different parallel
implementations of the GA (e.g., see Cantu-Paz 1999, 2000; Cantu-Paz and
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r
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Figure 5.31 Theoretical speedup of GA with Npop = 100.
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Figure 5.32 Theoretical speedup of GA with Npop = 1000.

Figure 5.33 Optimal number of processors for master-slave GA as a function of Tf /Tc

and Npop.
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Goldberg 1999, 2003; Grefenstette, 1991). One empirical study by Gordon and
Whitley (1993) compared the performance for different implementations of
parallel GAs using a suite of test functions. It is no surprise that the parallel
algorithms performed best on the most difficult problems. Their island routine
performed consistently well as did their cellular implementation.

5.14.4 An Example Parallel GA

We have seen that for a parallel GA to show some speedup when including
more processors, it needs to be run with a reasonably CPU intensive cost 
function. For our example problem we took the approach of engineers or 
scientists who don’t want to change too much about our codes. We simply
implemented our current code on a MIMD 64 node Beowulf Cluster using
High Performance Fortran. Note that this amounts to a master–slave parallel
implementation. For the most simple cost functions, any speedup from using
multiple processors was overshadowed by communication costs.Then we tried
a more time intensive cost function that requires averaging least mean square
differences over 1000 points for each chromosome evaluated (the nonlinear
empirical model of Section 6.8).We used a continuous GA with roulette wheel
selection, population size of Npop = 24 and mutation rate m = 0.2. When this
more complex cost function was studied, we got the time requirement curves
shown in Figure 5.34. Although we saw a definite speedup, it did not increase
beyond eight processors. This is consistent with the optimal number of proces-
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Figure 5.34 Speedup curve for example parallel GA problem.



sors computed in (5.14) and demonstrated in Figure 5.33 for this small popu-
lation size.We would expect to see better speedup curves with an island imple-
mentation and with larger population sizes.

5.14.5 How Parallel GAs Are Being Used

Parallel GAs are becoming important as the number of parallel machines
increases. Particularly for very expensive cost functions, such as full simula-
tions, parallel implementations are making GAs a competitive strategy. Just a
few of the many examples include solution to the satisfiability problem (Folino
et al., 2001), optimizing supersonic wings via running an Euler equation model
(Obayashi et al., 2000), optimal design of elastic flywheels (Eby et al., 1999),
and many others. The number of parallel GA applications is expanding expo-
nentially and may be the wave of the future.
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EXERCISES

1. Modify a binary GA to avoid repeated chromosomes by:

a. Making all the initial population members unique.
b. Checking to make sure that a chromosome is only ever evaluated once.

2. Solve (5.1) with the following weights: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

3. Use the Pareto GA to solve (5.1).

4. How do the following affect the Pareto GA:

a. Population size
b. Mutation rate
c. Type of crossover
d. Binary versus continuous GAs
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5. Write a continuous or binary hybrid GA that uses one of the following
local optimizers:

a. Nelder-Mead downhill simplex
b. BFGS
c. DFP
d. Steepest descent
e. Random search

6. Compare the performances of the GA with the various local optimizers
using the function _____ from Appendix I.

7. Compare the performance of the hybrid GA with local optimizer _____
against a binary and/or continuous GA using the function _____ from
Appendix I.

8. Compare the convergence of a binary GA with and without a Gray code.
Use function _____ in Appendix I.

9. How does the number of bits in a gene effect the performance of a GA?

10. Modify your binary GA for two-point crossover. Does this improve the
performance of the GA over single-point crossover? Demonstrate by
averaging the performance over several different test functions.

11. Modify your binary GA for two-point crossover. Does it matter which seg-
ments are swapped in the crossover? Should the segments be randomly
swapped or is it sufficient to just swap the middle segment?

12. Modify your binary GA for two-point crossover with three parents. Does
this improve the performance of the GA over single-point crossover?
Demonstrate by averaging the performance over several different test
functions.

13. Modify the binary GA to do uniform crossover. Does this improve the
performance of the GA over single- or double-point crossover? Demon-
strate by averaging the performance over several different test functions.

14. Implement (5.10) as a crossover scheme for your continuous GA. Does
this improve performance?

15. Implement (5.11) as a crossover scheme for your continuous GA. Does
this improve performance?

16. Compare several different methods of sampling the initial population. Use
averaging and three different test functions. Does one method work better
than the others?

17. Add a life span to your chromosomes. Does this improve GA 
performance?
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18. Try placing an initial first guess close to the global minimum of test func-
tion _____ from Appendix I. How does it affect the convergence of

a. Nelder-Mead downhill simplex
b. BFGS
c. DFP
d. Steepest descent
e. Random search
f. Binary GA
g. Continuous GA

What happens if your seed is not in the bowl of the global minimum?

19. For a (i) binary GA and (ii) continuous GA, implement one of the 
following variable mutation rates:

a. First generation has m = 0.5, and subsequent generations have a low m.
b. Exponentially decreasing m over all generations.
c. Linearly decreasing m over all generations.
d. Exponentially increasing m over all generations.
e. Linearly increasing m over all generations.

Compare and make recommendations using some of the cost functions in
Appendix I.

20. Write your own permutation GA. Test it on the traveling salesperson
problem for 8, 12, 16, and 20 cities. Do you get the same solution for each
independent run?

21. For a (i) binary GA and (ii) continuous GA, perform a study of the fol-
lowing GA parameters, using the test functions:

a. Population size
b. Mutation rate
c. Crossover rate
d. Selection rate

22. Does the selection of test function matter when comparing the perfor-
mance of GAs?

23. Write a mGA.Does it improve the performance compared to a binary GA?

24. Write a master–slave parallel GA. Test it on varying numbers of proces-
sors. Plot a speedup curve.

25. Write a cellular parallel GA.Test it on varying numbers of processors. Plot
a speedup curve.

26. Write an island parallel GA.Test it on varying numbers of processors. Plot
a speedup curve.
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CHAPTER 6

Advanced Applications

151

Now that we have seen some basic applications of both binary and continu-
ous GAs and discussed some of the fine points of their implementation, it will
be fun to look at what can be accomplished with a GA and a bit of imagina-
tion. The examples in this chapter make use of some of the advanced topics
discussed in Chapter 5 and add variety to the examples presented in Chapter
4. They cover a wide range of areas and include technical as well as nontech-
nical examples. The first example is the infamous traveling salesperson prob-
lem where the GA must order the cities visited by the salesperson.The second
example revisits the locating-an-emergency-response unit from Chapter 4 but
this time uses a Gray code. Next comes a search for an alphabet that decodes
a secret message. The next examples come from engineering design and
include robot trajectory planning and introductory stealth design.We end with
several examples from science and mathematics that demonstrate some of the
ways in which GAs are being used in research: two use data to build inverse
models, one couples a simulation with a GA to identify allocations of sources
to an air pollution monitor, one combines the GA with another artificial intel-
ligence technique—the neural network—and the final one finds solutions to a
nonlinear fifth-order differential equation.

6.1 TRAVELING SALESPERSON PROBLEM

Chapter 5 presented several methods to modify the crossover and mutation
operators in order for a GA to tackle reordering or permutation problems.
It’s time to try this brand of GA on the famous traveling salesperson problem,
which represents a classic optimization problem that cannot be solved using
traditional techniques (although it has been successfully attacked with simu-
lated annealing; Kirkpatrick et al., 1983). The goal is to find the shortest route
for a salesperson to take in visiting N cities. This type of problem appears in
many forms, with some engineering applications that include the optimal
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layout of a gas pipeline, design of an antenna feed system, configuration of
transistors on a very large-scale integration (VLSI) circuit, or sorting objects
to match a particular configuration. Euler introduced a form of the traveling
salesperson problem in 1759, and it was formally named and introduced by
the Rand Corporation in 1948 (Michalewicz, 1992).

The cost function for the simplest form of the problem is just the distance
traveled by the salesperson for the given ordering (xn, yn), n = 1, . . . , N given 
by

(6.1)

where (xn, yn) are the coordinates of the nth city visited. For our example, let’s
put the starting and ending point at the origin, so (x0, y0) = (xN+1, yN+1) = (0, 0)
= starting and ending point. This requirement ties the hands starting of the
algorithm somewhat. Letting the starting city float provides more possibilities
of optimal solutions.

The crossover operator is a variation of the cycle crossover (CX) described
in Chapter 5. Here, however, we randomly select a location in the chromo-
some where the integers are exchanged between the two parents. Unless the
exchanged integers are the same, each offspring has a duplicate integer. Next
the repeated integer in offspring1 is switched with the integer at that site in
offspring2. Now a different integer is duplicated, so the process iterates until
we return to the first exchanged site. At this point each offspring contains
exactly one copy of each integer from 1 to N.The mutation operator randomly
chooses a string, selecting two random sites within that string, and exchanges
the integers at those sites.

We’ll initially look at this problem with N = 13 cities. Given the fixed 
starting and ending points, there are a total of 13!/2 = 3.1135 ¥ 109 possible
combinations to check. To test the algorithm, we will start with a configura-
tion where all the cities lie in a rectangle as shown in Figure 6.1. We know that
the minimum distance is 14. The GA parameters for this case are Npop = 400,
Nkeep = 200, and m = 0.04. The algorithm found the solution in 35 generations
as shown in Figure 6.2.

Now let’s try a more difficult configuration. Randomly placing the 25 cities
in a 1 ¥ 1 square doesn’t have an obvious minimum path. How do we know
that the GA has arrived at the solution? The optimal solution will have no
crossing paths. So we’ll plot the solution and check. The algorithm had Npop =
100, Nkeep = 50, and m = 0.04. This algorithm found the minimum in 130 gener-
ations. Figure 6.3 shows the convergence of the algorithm, and Figure 6.4 is
the optimal solution. We found that low population sizes and high mutation
rates do not work as well for the permutation problems. For more details, see
Whitley et al. (1991).
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6.2 LOCATING AN EMERGENCY RESPONSE UNIT REVISITED

Finding the location of an emergency response unit described in Chapter 4
had a cost surface with two minima. Running the continuous and binary GAs
revealed that the continuous GA was superior. One of the problems with the
binary GA is the use of binary numbers to represent variable values. In this
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Figure 6.1 Graph of 13 cities arranged in a rectangle. The salesperson starts at the
origin and visits all 13 cities once and returns to the starting point. The obvious solu-
tion is to trace the rectangle, which has a distance of 14.
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Figure 6.2 Convergence of the genetic algorithm when there are 13 cities on a 
rectangle as shown in Figure 6.1.



chapter we solve the same problem with a binary GA but use a Gray code to
represent the variables.

Gray codes don’t always improve the convergence of a GA. The conver-
gence graph in Figure 6.5 shows that the Gray code did improve performance
in this instance. However, implementing the Gray code in the GA slows down
the algorithm because the translation of the binary code into binary numbers
is time-consuming. We’re somewhat skeptical of adding the Gray code trans-
lation to our GAs, so we usually don’t. However, the result here shows that a
small improvement is possible with the Gray code.

154 ADVANCED APPLICATIONS

0 50 100 150
4

5

6

7

8

9

10

11

12

generation

co
st mean cost 

minimum cost 

Figure 6.3 Convergence of the GA for the 25 city traveling salesperson problem.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Figure 6.4 GA solution to 25 city traveling salesperson problem.



6.3 DECODING A SECRET MESSAGE

This example uses a continuous GA to break a secret code. A message 
consisting of letters and spaces is encoded by randomly changing one letter to
another letter. For instance, all d’s may be changed to c’s and spaces changed
to q’s. If the message uses every letter in the alphabet plus a space, then there
are a total of 27! possible codes, with only one being correct. If the message
uses S symbols, then there are 27! - S! possible encodings that work.

A chromosome consists of 27 genes with unique values from 1 to 27. A 1
corresponds to a space and 2 through 27 correspond to the letters of the alpha-
bet. Letters and spaces in the message receive the appropriate numeric values.
The cost is calculated by subtracting the guess of the message from the known
message, taking the absolute value, and summing:

(6.2)

We know the message when the cost is zero.
As an example, let’s see how long it takes the GA to find the encoding 

for the message “bonny and amy are our children.” This message has 30 total
symbols, of which 15 are distinct. Thus 15 of the letters must be in the proper
order, while the remaining 12 letters can be in any order. The GA used the
following constants: Npop = 400, Nkeep = 40, and m = 0.02. It found the message
in 68 generations as shown in Figure 6.6. Progress on the decoding is shown
in Table 6.1.
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Figure 6.6 Genetic algorithm that decodes the message “bonny and amy are our 
children” in 68 generations.

A more difficult message is “jake can go out with my beautiful pets and
quickly drive to see you.” This message lacks only x and z. It has 25 distinct
symbols and a total of 65 total symbols. Figure 6.7 shows the convergence 
in this case with Npop = 500, Ngood = 40, and m = 0.02. The algorithm found the
solution in 86 generations. Progress on the decoding is shown in Table 6.2.

6.4 ROBOT TRAJECTORY PLANNING

Robots imitate biological movement, and GAs imitate biological survival. The
two topics seem to be a perfect match, and many researchers have made that
connection. Several studies have investigated the use of GAs for robot tra-

TABLE 6.1 Progress of the GA as It Decodes the
Secret Message

Generation Message

1 amiizbditbdxzbdqfbmvqbeoystqfi
10 krooy aoe any aqf rwq gbpseqfo
20 crooy aoe any aqf rwq gdiheqfo
30 dpooy aoe any arf pwr ghikerfo
40 bqmmz amd anz are qur cfildrem
50 bonnz and amz are osr cghldren
60 bonny and ajy are our children
68 bonny and amy are our children



jectory planning (Davidor, 1991; Davis, 1991; Pack et al., 1996). For example,
the goal is to move a robot arm in an efficient manner while avoiding obsta-
cles and impossible motions. The even more complicated scenario of moving
the robot arm when obstacles are in motion has been implemented with a 
parallel version of a GA (Chambers, 1995).Another application simulated two
robots fighting. A GA was used to evolve a robot’s strategy to defeat its oppo-
nent (Yao, 1995).

A robot trajectory describes the position, orientation, velocity, and accel-
eration of each robot component as a function of time. In this example, the
robot is a two-link arm having two degrees of freedom in a plane called the
robot workspace (Figure 6.8) (Pack et al., 1996). For calculation purposes this
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Figure 6.7 Genetic algorithm that decodes the message “jake can go out with my
beautiful pets and quickly drive to see you” in 86 generations.

TABLE 6.2 Progress of the GA as It Decodes the Secret Message

Generation Message

1 vhte fhb po olq zjqk ds mehlqjxlu neqr hbg wljftus gcjae qo ree sol
10 cahd bas np pxt iqtf kz edaxtqwxj vdtl asg oxqbhjz grqud tp ldd zpx
20 jakh dar go out wftb mx nhautfcui phty are sufdkix ezfqh to yhh xou
30 faje can gp pvs yish mx reavsikvl ueso and qvicjlx dwize sp oee xpv
40 kaje can dp pvt yitg mx reavtifvl oets anb qvicjlx bwize tp see xpv
50 jake can dp pvt xitg my heavtifvl oets anb qvickly bwize tp see ypv
60 jake can gp put xith my deautiful oets anb quickly bvize tp see ypu
70 jake can go out xith my beautiful pets and quickly dwize to see you
80 jake can go out xith my beautiful pets and quickly dwive to see you
86 jake can go out with my beautiful pets and quickly drive to see you



arm is approximated by two line segments in Cartesian coordinates as shown
in Figure 6.9. Each joint has its own local coordinate system that can be related
to the base x0, y0 coordinate system (located at the shoulder joint). The end-
effector or tip of the robot arm is of most interest and has a local coordinate
system defined by x2, y2. An intermediate coordinate system at the elbow joint
is defined by x1, y1. Using the Donauit-Hartenberg parameters, one can trans-
form an end-effector position in terms of the x0, y0 coordinates by
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(6.3)

where

x2, y2, z2 = position of end-effector with respect to coordinate system 2 
(end-effector based coordinate system)

x0, y0, z0 = position of end-effector with respect to the base coordinate
system

cos u12 = cos u1 cos u2 - sinu1 sin u2

sin u12 = sinu1 cos u2 + cos u1 sinu2

�1 = length of link 1
�2 = length of link 1
u1 = angle between x0-axis and link 1

u2 = angle between x1-axis and link 1

Thus knowing the length of the links and the angles allows us to transform
any points on the robot arm from the x2, y2 coordinate system to the x0, y0 coor-
dinate system. Our goal is to find the optimal path for the robot to move
through its environment without colliding with any obstacles in the robot
workspace.

Although following the end-effector path through Cartesian space (x0- and
y0-axes) is easiest to visualize, it is not of the most practical value for opti-
mization. First, the calculation of joint angles at each point along the path is
difficult. Second, the calculations can encounter singularities that are difficult
to avoid. An alternative approach is to formulate the trajectory problem in 
the configuration space (u1- and u2-axes) that governs the position of the end-
effector. Although numerically easier, it can result in complicated end-
effector paths. We will go with the numerically easier version and let the 
GA optimize in configuration space for this example.

Obstacles in the form of impossible robot joint angle combinations must be
taken into account when designing the cost function. It can be shown that point
obstacles are contained within an elliptical region in configuration space (Pack
et al., 1996). As an example, a point obstacle in the world space transforms
into a curved line in configuration space (Figure 6.10) (Pack et al., 1996). This
line is nicely contained within an ellipse, and an ellipse is much easier to model
as an obstacle.

The cost function is merely the length of the line needed to get from the
starting point to the ending point in the configuration space. Rather than
attempt to find a continuous path between the start and destination points,
piecewise line segments are used. This example establishes a set number of
line segments before the GA begins. Consequently the length of all the chro-
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mosomes are the same. Others have used variable length chromosomes to find
the optimum path. (The reader interested in this approach is referred to
Davidor, 1991.)

The first example has four obstacles in the configuration space with start
and stop points in obscure parts of the space. Only three intermediate points
or four line segments are permitted to complete the shortest path from the
start to the finish. The binary GA had Npop = 80 members in the population
and ran for 10 generations. The first generation had an optimal path length 
of 11.06 units, as shown in Figure 6.11. After 10 generations the minimum 
cost reduced to 9.656 units, and its path in configuration space is shown in
Figure 6.12. Adding more intermediate points would give the algorithm more
freedom to find a better solution.

A second example begins with a real world problem with five-point obsta-
cles in world space that transformed into an ellipse in the configuration space.
Again, the binary GA had Npop = 80 members in the population and ran for
10 generations. The path after the first generation is shown in Figure 6.13 and
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Figure 6.11 The best path between the obstacles after generation 1 is 11.06 units long.

has a cost of 7.321 units. After 10 generations the minimum cost reduced to
6.43 units, and its path in configuration space is shown in Figure 6.14. This
optimal solution translates back to world space, as shown in Figure 6.15, where
the symbols * and • denote the starting and ending robot end-effector 
positions, respectively. The elliptical obstacle shapes in Figure 6.13 and 6.14
translate into points (denoted by + signs) in Figure 6.15.

6.5 STEALTH DESIGN

A stealth airplane is difficult to detect with conventional radar. Engineers 
use a combination of materials, size, orientation, and shaping to reduce the
radar cross section of an airplane. The radar cross section of a simple 
two-dimensional reflector can be modified by the placement of absorbing
materials next to it. This type of reflector design is also of interest to satellite
antenna manufacturers to lower sidelobe levels and reduce the possibility of
interference with the desired signal.

This example demonstrates how to use GAs to find resistive loads that
produce the lowest maximum backscatter relative sidelobe level from a per-
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Figure 6.12 The best path between the obstacles after generation 10 is 9.656 units
long.

fectly conducting strip. The radar cross section of a 6l strip appears in Figure
6.16, and its highest relative sidelobe level is about 13.33dB below the peak
of the main beam. The radar cross section is given in terms of dBlambda or
decibels above one wavelength. The wavelength is associated with the center
frequency of the electromagnetic wave incident on the strip. A model of the
loaded strip is shown in Figure 6.17.Assuming the incident electric field is par-
allel to the edge of the strip, the physical optics backscattering radar cross
section is given by Haupt (1995):

(6.4)

where

s = sin f
u = cos f
2a = width of perfectly conducting strip
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Figure 6.13 The best path between the obstacles after generation 1 has a length of
7.32 units.

bn = width of load

hn = resistivity of load

Sa = (sinx)/x
Bw, Br = number of bits representing the strip width and resistivity
bw, br = array of binary digits that encode the values for the strip widths

and resistivities.
W, R = width and resistivity of the largest quantization bit

Eight resistive loads are placed on each side of a perfectly conducting strip
that is 6l wide. The widths and resistivities of these loads are optimized to
reduce the maximum relative sidelobe level of the radar cross section. Both
the width and resistivity of each load are represented by 5 quantization bits,
and W = 1 and R = 5. The optimized values arrived at by the GA are
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Figure 6.14 The best path between the obstacles after generation 10 has a length of
6.43 units.

These values result in a maximum relative radar cross section sidelobe level
of -33.98dB. Figure 6.18 shows the optimized radar cross section. The peak of
the mainbeam is about 6dB higher than the peak of the mainbeam of the 6l
perfectly conducting strip radar cross section in Figure 6.16. In exchange for
the increase in the mainbeam, the peak sidelobe level is 15dB less than 
the peak sidelobe level in Figure 6.16. In other words, compared to the 
6l perfectly conducting strip, this object is easier to detect by a radar looking
at it from the broadside, but it is more difficult to detect looking off 
broadside.

The resistive loads attached to the perfectly conducting strip were 
also optimized using a quasi-Newtonian method that updates the 
Hessian matrix using the Broyden–Fletcher–Goldgarb–Shanno (BFGS)
formula. A true gradient search was not used because the derivative 
of (6.4) is difficult to calculate. The quasi-Newtonian algorithm per-
formed better than the GA for 10 or less loads. Using the quasi-
Newtonian method in the previous example resulted in a maximum relative
sidelobe level of -36.86dB. When 15 loads were optimized, GAs were clearly
superior.



6.6 BUILDING DYNAMIC INVERSE MODELS—THE LINEAR CASE

Inverse models are becoming increasingly common in science and engineer-
ing. Sometimes we have collected large amounts of data but have not devel-
oped adequate theories to explain the data. Other times the theoretical models
are so complex that it is extremely computer intensive to use them.Whichever
the circumstance, it is often useful to begin with available data and fit a 
stochastic model that minimizes some mathematical normed quantity, that is,
a cost. Our motivation here lies in trying to predict environmental variables.
In recent years many scientists have been using the theory of Markov
processes combined with a least squares minimization technique to build sto-
chastic models of environmental variables in atmospheric and oceanic science
(Hasselmann, 1976; Penland, 1989; Penland and Ghil, 1993). One example is
predicting the time evolution of sea surface temperatures in the western
Pacific Ocean as a model of the rises and falls of the El Niño/Southern Oscil-
lation (ENSO) cycle. This problem proved challenging. However, stochastic
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Figure 6.15 Actual movement of the robot arm through the obstacles in world space
(denoted by + signs). The plus signs transform into the elliptical regions shown in con-
figuration space (Figures 6.13 and 6.14).



models have performed as well as the dynamical ones in predicting future
ENSO cycles (Penland and Magorian 1993; Penland, 1996). Another applica-
tion involves predicting climate. We now build very complex climate models
that require huge amounts of computer time to run. There are occasions when
it would be useful to predict the stochastic behavior of just a few of the key
variables in a large atmospheric model without concern for the details of day-
to-day weather. One such application is when an atmospheric climate model
is coupled to an ocean model. Since the time scale of change of the atmos-
phere is so much faster than that of the ocean, its scale dictates the Courant-
Friedichs-Levy criteria, which limits the size of the allowable time step. For
some problems it would be convenient to have a simple stochastic model of
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the atmosphere to use in forcing an ocean model. Recent attempts have shown
that such models are possible and perhaps useful for computing responses to
forcing (Branstator and Haupt, 1998). However, the least squares techniques
typically used to build these models assume a Markov process. This assump-
tion is not valid for most environmental time series. Would a different method
of minimizing the function produce a better match to the environmental time
series? This is an interesting question without a clear answer. Before answer-
ing it using large climate models, it is convenient to begin with simple low-
dimensional models of analytical curves.

We use a GA to compute parameters of a model of a simple curve that is
parametric in time. In particular, we wish to fit a model

(6.5)

to a time series of data. Here x is an N-dimensional vector, dx/dt = xt is its time
tendency, and A is an N ¥ N matrix relating the two. Note that most first-order

dx
dt

= Ax

BUILDING DYNAMIC INVERSE MODELS—THE LINEAR CASE 167

0 0.2 0.4 0.6 0.8 1

-15

-10

-5

0

5

10

15

20

25

30

u

R
C

S
 in

 d
B

la
m

bd
a

max rel sll = -33.98 dB

Figure 6.18 Radar cross section of the 6l wide strip with 8 resistive loads placed at
its edges. The level between the maximum sidelobe and the peak of the mainbeam is
-33.98 dB, which is a 20.78 dB reduction.



time-dependent differential equations can be discretized to this form. Our goal
is to find the matrix A that minimizes the cost

(6.6)

where P is any appropriate power norm that we choose. The least squares
methods use P = 2, or an L2 norm. The angular brackets denote a sum over all
of the data in the time series.

An example time series is a spiral curve generated by (X, Y, Z) = (sin(t),
cos(t), t), with t = [0, 10p] in increments of p/50.The time evolution of this curve
appears in Figure 6.19. Note that for this problem, computation of the cost
function requires a summation over 500 time increments. However, even with
the reasonably large population size and number of generations (70) that we
computed, the computer time required was not excessive. (Note that for a
bigger problem with a longer averaging period, this would no longer be true.)
A continuous GA is applied to this curve with a population size of Npop = 100,
and a mutation rate of m = 0.2. Since the GA is oblivious to which value of P
we choose, we experimented a bit and found the best results for moderate P.
The solution displayed here uses P = 4. Evolution of the minimum cost appears
in Figure 6.20. We notice that the cost decreases several orders of magnitude
over the 70 generations. The result appears in Figure 6.21. We see that the
general shape of the spiral curve is captured rather well. The bounds in X and
Y are approximately correct, but the evolution in Z = t is too slow. We found

cos t
p= -( )x Axt
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a dynamical inverse model of the spiral curve in Figure 6.19.

-1
-0.5

0
0.5

1
1.5

-1

-0.5

0

0.5

1
-0.4

-0.3

-0.2

-0.1

0

0.1

XY

t

Figure 6.21 Genetic algorithm’s dynamical fit of a model based on the time series of
the spiral curve in Figure 6.19.



170 ADVANCED APPLICATIONS

-1

-0.5

0

-0.5

0

0.5

1
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

XY

t

Figure 6.22 A linear least square dynamical fit of a model based on the time series
of the spiral curve in Figure 6.19.

that this aspect of our model was rather difficult to capture. In terms of dynam-
ical systems, we were able to find the attractor but not able to exactly model
the evolution along it. For comparison a standard least squares technique is
used to solve the same problem. The result appears as Figure 6.22. We can see
that the least squares method could not even come close to capturing the shape
of the attractor. Of course, we can fine-tune the least squares method by adding
a noise term in the cost function.We can do that for the GA as well.The advan-
tage of the GA is that it is easy to add complexity to the cost function. Feeding
this simple model more variables adds nothing to the solution of the problem,
since it can be completely specified with the nine degrees of freedom in the
matrix.

6.7 BUILDING DYNAMIC INVERSE MODELS—THE 
NONLINEAR CASE

An enhancement to the application of the previous section on empirical mod-
eling is including higher order terms in the calculation. Many dynamical 
problems are not linear in nature, so we cannot expect them to reproduce 



the shape of the data using linear stochastic models. We saw this in the 
traditional least square fit to the spiral model in the preceding section (see
Figure 6.22). The spiral model was sinusoidal and that behavior could not be
captured with the linear fit. In this section we expand the inverse model to
include quadratically nonlinear terms, often the form that appears in fluid
dynamics problems.

The example problem that we consider is predator-prey model (also known
as the Lotka-Volterra equations), namely

(6.7)

where x is the number of prey and y the number of predators.The prey growth
rate is a while the predator death rate is c. Variables b and d characterize the
interactions. Equations (6.7) were integrated using a fourth order Runge Kutta
with a time step of 0.01 and variables a = 1.2, b = 0.6, c = 0.8, and d = 0.3. The
time series showing the interaction between the two appears in Figure 6.23.
This time series serves as the data for computing the inverse models.The phase
space plot is shown in Figure 6.24 where we see the limit cycle between the
predators and the prey.

dx
dt

ax bxy

dy
dt

cy dxy

= -

= - +
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Figure 6.23 Time series showing predator and prey variations over time according to
(6.7).
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To fit a linear model, we would use (6.5). The least squares fit to the linear
model produces the time series of Figure 6.25. We note that the agreement is
quite poor, as one would expect given that the system (6.7) is highly nonlin-
ear. With no nonlinear interaction available, the number of prey grows while
the number of predators remains stationary.

To obtain a more appropriate nonlinear fit, we now choose to model the
data with a nonlinear model:

(6.8)

We allow nonlinear interaction through the nonlinear third-order tensor oper-
ator, N, and include a constant, C. Although one can still find a closed form
solution for this nonlinear problem, it involves inverting a fourth-order tensor.
For problems larger than this simple two-dimensional one, such an inversion
is not trivial. Therefore we choose to use a GA to find variables that minimize
the least square error between the model and the data. The cost function is

(6.9)

The GA used a population size of 100, and a mutation rate of 0.2.A time series
of the solution as computed by the GA appears in Figure 6.26. Note that
although the time series does not exactly reproduce the data, the oscillations

cost = - + +( )x Nx x Ax Ct
T p

x Nx x Ax Ct
T= + +
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Figure 6.25 Least squares time series fit to predator-prey model.
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Figure 6.27 The predator-prey relation in state space as computed by the nonlinear
model with parameters fit by the GA.

are reproduced including the phase shift of roughly a quarter period. The
wavelength is not exact and the amplitudes grow in time, indicating an insta-
bility. This instability is likely inherent in the way that the model is matched.
However, the reproduction of such a difficult nonlinear system is amazing
given the comparison to traditional linear models.

The state space plot appears in Figure 6.27. The limit cycle is not exactly
reproduced. The nonlinear model instead appears unstable and slowly grows.
For comparison, however, the linear least squares model resulted in a single
slowly growing curve (Figure 6.25) that was a much worse match.The GA non-
linear model was able to capture the cyclical nature of the oscillations, a huge
improvement.

Finally Figure 6.28 shows the convergence of the GA for a typical run of
fitting the nonlinear model (6.8) to the data. Due to their random nature, the
results of a GA are never exactly the same. In particular, the convergence plots
will differ each time. However, the results are quite reliable. For this simple
two-dimensional nonlinear system describing predator-prey relations, the GA
fit the variables of a nonlinear model so that the attractor was much better
produced than by a traditional linear least squares fit. Although the match is
not perfect, the nonlinear GA model captures the essence of the dynamics.



6.8 COMBINING GAs WITH SIMULATIONS—AIR POLLUTION
RECEPTOR MODELING

Now we move into problems that require running some sort of simulation as
part of the cost function. In both design and in fitting some inverse models,
we often know something about the physics of the problem that can be for-
mulated into a numerical simulation. That simulation is often necessary to
evaluate the quality of the chosen design or fitting model. For instance, several
engineers have designed airplanes wings and airfoils by optimizing the shape
through testing with a full fluid dynamics model (e.g., Karr, 2003; Obayashi 
et al., 2000).

The problem demonstrated here begins with air pollution data monitored
at a receptor. Given general information about the regional source character-
istics and meteorology during the period of interest, we wish to apportion the
weighted average percentage of collected pollutant to the appropriate sources.
This problem is known as air pollution receptor modeling. More specifically,
our example problem is to apportion the contribution of local sources of air
pollution in Cache Valley, Utah, to the measured pollutants received at a mon-
itoring station owned by the Utah Department of Air Quality. This demon-
stration problem uses sixteen sources surrounding the receptor as seen in
Figure 6.29. Of course, the spread and direction of pollutant plumes are highly
dependent on wind speed and direction in addition to other meteorological
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variables. Cartwright and Harris (1993) used a GA to apportion sources to
pollutant data at receptors. They began with a chemical mass balance model
of the form

(6.10)M S R∑ =
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where M is the source profile matrix, which denotes the effective strength of
pollutant from a given source at the receptor; S is the fraction of the source
that contributes to the concentration at the receptor, the unknown appor-
tionments; and R is the concentration of each pollutant measured at a given
receptor. In theory, these matrices are whatever size can incorporate as many
sources, receptors, and pollutants as necessary. Here we demonstrate the tech-
nique with a single pollutant at a single receptor. Cartwright and Harris (1993)
chose to use uniform dispersion in all directions, with a decrease of concen-
tration with distance according to a r-2.5 power law, where r is the distance from
the source to the receptor. Here we, instead, choose to use the more refined
dispersion law as found in Beychok (1994), together with actual wind data for
the time period modeled:

(6.11)

where

C = concentration of emissions at a receptor
(x, y, zr) = Cartesian coordinates of the receptor in the downwind direction

from the source
Q = source emission rate
u = wind speed
He = effective height of the plume centerline above ground

sy, sz = standard deviations of the emission distribution in the y and z
directions

Note that there are a myriad of assumptions hidden behind the problem.
First, we assume that the wind speed and direction are constant over the entire
time period. Although we know a priori that this assumption is poor, it is bal-
anced by the assumption of Gaussian dispersion in a single direction.Although
a plume of pollutants may meander throughout the time period, we only care
about the weighted average statistical distribution of the concentrations. Next
we are forced to assume a constant emission rate, in this case an average
annual rate. The hourly rate is much different. Another major difficulty is in
estimating reasonable average values for the dispersion coefficients, sy and sz.
Again, we must assume a weighted average over time and use dispersion 
coefficients computed by

(6.12)

where x is the downwind distance (in km) and I, J, and K are empirical co-
efficients dependent on the Pasquill stability class (documented in a lookup
table; Beychok, 1994). The Pasquill stability class depends on wind speed,
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direction, and insolation. For this demonstration problem, we assumed neutral
stability (class D).

Equations (6.10) and (6.11) together with two lookup tables and (6.12)
convert the source emission rates into the elements of the source matrix, M,
which indicates an expected average concentration due to each source for a
constant emission rate and actual hourly average wind data. This process is
repeated for each source at each time. The measured concentrations are also
time averaged (in this case over a three-day period) and go into the matrix,
R. The goal is to solve for the fractions, S, that apportion the pollution to each
source. That is where the GA comes in. If R and S were constant 
one-dimensional vectors, one could easily solve for S. However, the need 
to sum the matrix times the factors hourly for differing meteorological 
conditions precludes a simple matrix inversion. The chromosomes of the GA
in this case represent the unknown elements of matrix S. The cost function is
the difference between the pollutant values at the receptor and the 
summation of the hourly concentrations predicted for each source as 
computed from the dispersion model (6.11) times the apportionment factors
supplied by the GA:

(6.13)

where with the Ch computed from (6.11).

The receptor model was run using actual meteorological data for three-
day periods in 2002 and comparing predicted weighted average con-
centrations of PM10 (particulate matter less than 10 micrometers in 
diameter) measured at the receptor. The dispersion coefficients were 
computed assuming a Pasquill stability class D. Three to four runs of 
the GA were done for each time period using a population size of 12 
and mutation rate of 0.2. The fractions in the unknown vector, S, were 
normalized to sum to 1. Runs were made for 1000 generations. Four 
different runs were made for each of five different days and results appear 
in Table 6.3 for the run with the best convergence for each day. Those 
days were chosen to represent different concentrations and meteorology 
conditions, although we were careful to choose days where the assumption 
of stability D appeared to be good. For many of the runs the factors 
converged on the heaviest weighting of source 13, the Utah State University
heating plant. Note that this does not necessarily imply that it contributed 
the most pollutant but rather that its average emission rate, when dis-
persed according to (6.11) using actual wind data, must have a heavier 
weighting to account for the monitored PM10. The second highest 
weighted source was number 9, a local construction company.

The point of this exercise is to demonstrate that the GA is a useful tool 
for problems that require including another model, in this case a dis-
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persion model, to evaluate the cost of a function. Despite the large number 
of times that (6.13) was evaluated, it still not prohibitive in terms of 
CPU time required. Coupling GAs with simulations is becoming a more
popular way to do searches. The work of Loughlin et al. (2000) coupled a 
full air quality model with a GA to design better control strategies to meet
attainment of the ozone standard while minimizing total cost of controls at
over 1000 sources. Such problems are requiring significant amounts of time on
computers.

6.9 OPTIMIZING ARTIFICIAL NEURAL NETS WITH GAs

An increasingly popular use of GAs combines their ability to optimize with
the strengths of other artificial intelligence methods. One of these methods is
the neural network. Artificial neural networks (ANN) have found wide use in
fields areas as signal processing, pattern recognition, medical diagnosis, speech
production, speech recognition, identification of geophysical features, and
mortgage evaluation.

ANNs model biological neurons in order to do numerical interpolation.
Figure 6.30 provides a sketch of a biological neuron and a human-made
neuron. The biological neuron acts as a processing element that receives many
signals. These signals may be modified by a weight at the receiving synapse.
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TABLE 6.3 Factors Computed to Apportion Sources
to Received PM10 Measurements

Received 22–Apr 21–Jun 27–Jul 11–Aug 21–Nov

(mg/m3) 8 27 39 36 33

Source
1 0.000 0.002 0.001 0.003 0.002
2 0.000 0.017 0.043 0.000 0.000
3 0.184 0.124 0.063 0.001 0.001
4 0.128 0.023 0.002 0.024 0.001
5 0.101 0.004 0.143 0.041 0.001
6 0.022 0.022 0.013 0.000 0.231
7 0.012 0.011 0.037 0.000 0.001
8 0.005 0.014 0.005 0.045 0.000
9 0.001 0.295 0.033 0.257 0.159

10 0.001 0.114 0.005 0.039 0.005
11 0.281 0.027 0.026 0.037 0.119
12 0.055 0.022 0.000 0.004 0.013
13 0.180 0.206 0.571 0.193 0.248
14 0.014 0.026 0.002 0.063 0.005
15 0.000 0.001 0.004 0.273 0.120
16 0.016 0.093 0.053 0.063 0.094
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Figure 6.30 Diagram of a biological neuron (top) and schematic of the artificial neural
network.

Then the processing element sums the weighted inputs. When the input
becomes sufficiently large, the neuron transmits a single output that goes off
to other neurons.The human-made neuron works by analogy. It takes an input,
multiplies it by a weight, adds a bias, and then passes the result through a trans-
fer function. Several neurons in parallel are known as a layer. Adding these
layers together produces the neural network. The weights and bias values 
are optimized to produce the desired output. Although there are many ways
to train the ANN, we are interested in coupling it with a GA to compute 
the optimum weights and biases. There are many good books on neural net-
works (e.g., Hagan et al., 1995; Fausett, 1994), so we will make no attempt to
fully describe ANN. Instead, we just briefly explain how we use a GA to 
train one.

We wish to approximate the function

(6.14)

To do this, we used the two-layer neural network shown in Figure 6.31 
with log-sigmoid transfer functions. The transfer function determines 
the threshold and amount of signal being sent from a neuron. Although
various transfer functions were tried, the log-sigmoid worked best for this
problem. It has the form 1/(1 + e-n) and maps the input to the interval [0, 1].

The goal is to compute the optimum weights and biases of the ANN using
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a GA. The GA chromosome is made up of potential weights and biases. The
GA cost function computes the mean square difference between the current
guess of the function and the exact function evaluated at specific points in x.
The function was sampled at intervals of 0.1 for training. We used a hybrid
GA having Npop = 8 and m = 0.1. The local optimizer was a Nelder-Mead algo-
rithm. The resulting approximation to (6.14) is shown in Figure 6.32. Note that
the function computed from the neural network with GA hybrid training
matches the known curve quite well.
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Figure 6.31 Two-layer neural network used to compute fit to (6.14).
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6.10 SOLVING HIGH-ORDER NONLINEAR PARTIAL
DIFFERENTIAL EQUATIONS

Two mathematical tools of scientists and engineers are ordinary and partial
differential equations (ODEs and PDEs). Normally we don’t think of these
equations as minimization problems. However, if we want to find values where
a differential equation is zero (a form in which we can always cast the system),
we can look for the minimum of its absolute value. Koza (1992) demonstrated
that a GA could solve a simple differential equation by minimizing the value
of the solution at 200 points. To do this, he numerically differentiated at each
point and fit the appropriate solution using a GA. Karr et al. (2001) used GAs
to solve inverse initial boundary value problems and found a large improve-
ment in matching measured values.That technique was demonstrated on ellip-
tic, parabolic, and hyperbolic PDEs.

We demonstrate here that a GA can be a useful technique for solving a
highly nonlinear differential equation that is formally nonintegrable. For com-
parison, we do know its solitary wave approximate solution. Solitary waves, or
solitons,are permanent-form waves for which the nonlinearity balances the dis-
persion to produce a coherent structure. We examine the super Korteweg-de
Vries equation (SKDV), a fifth-order nonlinear partial differential equation:

(6.15)

The functional form is denoted by u; time derivative by the t subscript; spatial
derivative by the x subscript; and a, m, and n are variables of the problem. We
wish to solve for waves that are steadily translating, so we write the t varia-
tion using a Galilean tranformation, X = x - ct, where c is the phase speed of
the wave. Thus our SKDV becomes a fifth-order, nonlinear ordinary differen-
tial equation:

(6.16)

Boyd (1986) extensively studied methods of solving this equation. He
expanded the solution in terms of Fourier series to find periodic cnoidal wave
solutions (solitons that are repeated periodically). Among the methods used
are the analytical Stokes’s expansion, which intrinsically assumes small ampli-
tude waves, and the numerical Newton-Kantorovich iterative method, which
can go beyond the small amplitude regime if care is taken to provide a very
good first guess. Haupt and Boyd (1988a) were able to extend these methods
to deal with resonance conditions. These methods were generalized to two
dimensions to find double-cnoidal waves (two waves of differing wave number
on each period) for the integrable Korteweg-de Vries equation (1988b) and
the nonintegrable regularized long wave equation (Haupt, 1988). However,
these methods require careful analytics and programming that is very problem
specific. Here we are able to add a simple modification to the cost function of
our GA to obtain a similar result.

a mu c u u vuX XXX XXXX-( ) + - = 0

u uu u vut x xxx xxx+ + - =a m 0
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To find the solution of equation (6.16), we expand the function u in terms
of a Fourier cosine series to K terms to obtain the approximation, uK:

(6.17)

The cosine series assumes that the function is symmetric about the X-axis
(without loss of generality). In addition we use the “cnoidal convention” by
assuming that the constant term a0 is 0. Now we can easily take derivatives as
powers of the wave numbers to write the cost that we wish to minimize as

(6.18)

This is reasonably easy to put into the cost function of a GA where we want
to find the coefficients of the series, ak. The only minor complication is com-
puting u to insert into the cost function, (6.18). However, this is merely one
extra line of code.

The parameters that we used here are n = 1, m = 0, a = 1, and a phase speed
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Figure 6.33 Cnoidal wave of the super Korteweg de Vries equation. Solid line: exact
solution; dashed line: genetic algorithm solution.
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of c = 14.683 to match with a well-known nonlinear solution. The phase speed
and amplitude of solitary-type waves are interdependent. We could instead
have specified the amplitude and solved for the phase speed. It is equivalent.
We computed the coefficients, ak, to find the best cnoidal wave solution for K
= 6. We used Npop = 100, m = 0.2, and 70 iterations. We evaluated the cost func-
tion at grid points and summed their absolute value. The results appear in
Figure 6.33. The solid line is the “exact” solution reported by Boyd (1986) and
the dashed line is the GA’s approximation to it. They are barely distinguish-
able. In addition we show a GA solution that converged to a double cnoidal
wave as Figure 6.34. Such double cnoidal waves are very difficult to compute
using other methods (Haupt and Boyd, 1988b).

So we see that GAs show promise for finding solutions of differential and
partial differential equations, even when these equations are highly nonlinear
and have high-order derivatives.

BIBLIOGRAPHY

Beychok, M. R. 1994. Fundamentals of Stack Gas Dispersion, 3rd ed. Irvine, CA: Milton
Beychok.

-4 -3 -2 -1 0 1 2 3 4
-100

-50

0

50

100

150

200

x

u

Figure 6.34 Double cnoidal wave of the super Korteweg de Vries equation as com-
puted by the genetic algorithm.



Boyd, J. P. 1986. Solitons from sine waves: Analytical and numerical methods for non-
integrable solitary and cnoidal waves. Physica 21D:227–246.

Branstator, G., and S. E. Haupt. 1998. An empirical model of barotropic atmospheric
dynamics and its response to forcing. J. Climate 11:2645–2667.

Cartwright, H. M., and S. P. Harris. 1993. Analysis of the distribution of airborne pol-
lution using GAs. Atmos. Environ 27A:1783–1791.

Chambers, L. (ed.). 1995. GAs, Applications, Vol. 1. New York: CRC Press.
Davidor, Y. 1991. GAs and Robotics. River Edge, NJ: World Scientific.
Davis, L. 1991. Handbook of GAs. New York: Van Nostrand Reinhold.
Fausett, L. 1994. Fundamentals of Neural Networks: Architectures, Algorithms, and

Applications. Upper Saddle River, NJ: Prentice Hall.
Hagan, M. T., H. B. Demuth, and M. Beale. 1995. Neural Network Design. Boston: PWS.
Hasselmann, K. 1976. Stochastic climate models. Part I: Theory. Tellus 28:473–485.
Haupt, R. L. 1995. An introduction to GAs for electromagnetics. IEEE Ant. Propagat.

Mag. 37:7–15.
Haupt, S. E. 1988. Solving nonlinear wave problems with spectral boundary value tech-

niques. Ph.D. dissertation. University of Michigan, Ann Arbor.
Haupt, S. E., and J. P. Boyd. 1988a. Modeling nonlinear resonance: A modification to

the Stokes’ perturbation expansion. Wave Motion 10:83–98.
Haupt, S. E., and J. P. Boyd. 1988b. Double cnoidal waves of the Korteweg De Vries

equation: Solution by the spectral boundary value approach. Physica 50D:117–134.
Holland, J. H. 1992. Genetic Algorithms. Sci. Am. 267:66–72.
Karr, C. L. 2003. Minimization of sonic boom using an evolutionary algorithm. Paper

AIAA 2003-0463. 40st AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV.
Karr, C. L., I. Yakushin, and K. Nicolosi. 2001. Solving inverse initial-value, boundary-

value problems via GA. Eng. Appl. Art. Intell. 13:625–633.
Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi. 1983. Optimization by simulated anneal-

ing. Science 220:671–680.
Koza, J. R. 1992. The Genetic Programming Paradigm: Genetically Breeding Popula-

tions of Computer Programs to Solve Problems. In B. Soucek (ed.), Dynamic,
Genetic, and Chaotic Programming: The Sixth Generation. New York: J. Wiley, pp.
203–321.

Loughlin, D. H., S. R. Ranjithan, J. W. Baugh, Jr., and E. D. Brill Jr. 2000. Application
of GAs for the design of ozone control strategies. J. Air Waste Manage. Assoc.
50:1050–1063.

Michalewicz, Z. 1992. Genetic Algorithms + Data Structures = Evolution Programs. New
York: Springer-Verlag.

Obayashi, S., D. Sasaki, Y. Takeguchi, and N. Hirose. 2000. Multiobjective evolutionary
computation for supersonic wing-shape optimization. IEEE Trans. Evol. Comput.
4:182–187.

Pack, D., G. Toussaint, and R. Haupt. 1996. Robot trajectory planning using a GA. Int.
Symp. on Optical Science, Engineering, and Instrumentation. SPIE’s Annual
Meeting, Denver, CO.

Penland, C. 1989. Random forcing and forecasting using principal oscillation pattern
analysis. Mon. Weather Rev. 117:2165–2185.

BIBLIOGRAPHY 185



Penland, C. 1996. A stochasic model of IndoPacific sea surface temperature anomalies.
Physica 98D:534–558.

Penland, C., and M. Ghil. 1993. Forecasting northern hemisphere 700 mb geopotential
height anomalies using empirical normal modes. Mon. Weather Rev. 121:2355.

Penland, C., and T. Magorian. 1993. Prediction of NINO3 sea-surface temperatures
using linear inverse modeling. J. Climate 6:1067.

Whitley, D., T. Starkweather, and D. Shaner. 1991. The traveling salesman and sequence
scheduling: Quality solutions using genetic edge recombination. In L. Davis (ed.),
Handbook of GAs. New York: Van Nostrand Reinhold.

Widrow, B., and S. D. Sterns, 1985. Adaptive Signal Processing. Upper Saddle River, NJ:
Prentice-Hall.

Yao, X. (ed.). 1995. Progress in Evolutionary Computation. New York: Springer-Verlag.

186 ADVANCED APPLICATIONS



CHAPTER 7

More Natural Optimization Algorithms

187

The GA is not the only optimization algorithm that models natural processes.
In this chapter we briefly present some of the current algorithms being used
for global optimization. Some introductory programs are included for your
amusement. Which algorithm is best? We tend to like the GA and some of 
the local optimization algorithms. The “No Free Lunch Theorem” says that 
the averaged performance of all search algorithms over all problems is equal
(Wolpert, 1997). In other words, the GA performs no better than a totally
random search when applied to all problems. Thus the idea is to use the right
algorithm for the right problem.

7.1 SIMULATED ANNEALING

In the early 1980s the method of simulated annealing (SA) was introduced by
Kirkpatrick and coworkers (1983), based on ideas formulated in the early
1950s (Metropolis, 1953). This method simulates the annealing process in
which a substance is heated above its melting temperature and then gradually
cooled to produce the crystalline lattice, which minimizes its energy probabil-
ity distribution.This crystalline lattice, composed of millions of atoms perfectly
aligned, is a beautiful example of nature finding an optimal structure. How-
ever, quickly cooling or quenching the liquid retards the crystal formation, and
the substance becomes an amorphous mass with a higher than optimum
energy state. The key to crystal formation is carefully controlling the rate of
change of temperature.

The algorithmic analog to this process begins with a random guess of the
cost function variable values. Heating means randomly modifying the variable
values. Higher heat implies greater random fluctuations. The cost function
returns the output, f, associated with a set of variables. If the output decreases,
then the new variable set replaces the old variable set. If the output increases,
then the output is accepted provided that

Practical Genetic Algorithms, Second Edition, by Randy L. Haupt and Sue Ellen Haupt.
ISBN 0-471-45565-2 Copyright © 2004 John Wiley & Sons, Inc.



(7.1)

where r is a uniform random number and T is a variable analogous to 
temperature. Otherwise, the new variable set is rejected. Thus, even if a vari-
able set leads to a worse cost, it can be accepted with a certain probability.
The new variable set is found by taking a random step from the old variable
set

(7.2)

The variable d is either uniformly or normally distributed about pold. This
control variable sets the step size so that, at the beginning of the process, the
algorithm is forced to make large changes in variable values. At times the
changes move the algorithm away from the optimum, which forces the algo-
rithm to explore new regions of variable space. After a certain number of iter-
ations, the new variable sets no longer lead to lower costs. At this point the
values of T and d decrease by a certain percent and the algorithm repeats. The
algorithm stops when T � 0. The decrease in T is known as the cooling sched-
ule. Many different cooling schedules are possible. If the initial temperature
is T0 and the ending temperature is TN, then the temperature at step n is given
by

(7.3)

where f decreases with time. Some potential cooling schedules are as follows:

1. Linearly decreasing: Tn = T0 - n(T0 - Tn)/N.
2. Geometrically decreasing: Tn = 0.99Tn-1.
3. Hayjek optimal: Tn = c/log(1 + n), where c is the smallest variation

required to get out of any local minimum.

Many other variations are possible. The temperature is usually lowered slowly
so that the algorithm has a chance to find the correct valley before trying to
get to the lowest point in the valley. This algorithm has essentially “solved”
the traveling salesperson problem (Kirkpatrick, 1983) and has been applied
successfully to a wide variety of problems.

We put an SA algorithm to work on (1.1). Figure 7.1 is a plot of all the
guesses made by the SA in the process of finding the minimum. As with the
GA, the random nature of this algorithm scatters the samples over the entire
extent of the cost function. Figure 7.2 is a plot of the guesses and the best guess
so far vs. the number of function evaluations. After 58 function evaluations,
the SA finds the minimum. SA compares favorably with the GA and 
performs considerably better with multimodal cost functions than local 
optimizers.
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7.2 PARTICLE SWARM OPTIMIZATION (PSO)

PSO was formulated by Edward and Kennedy in 1995. The thought process
behind the algorithm was inspired by the social behavior of animals, such as
bird flocking or fish schooling. PSO is similar to the continuous GA in that it
begins with a random population matrix. Unlike the GA, PSO has no evolu-
tion operators such as crossover and mutation. The rows in the matrix are
called particles (same as the GA chromosome). They contain the variable
values and are not binary encoded. Each particle moves about the cost surface
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Figure 7.1 Plot of all the guesses made by the SA in finding the minimum.

Figure 7.2 Convergence of the SA.



with a velocity.The particles update their velocities and positions based on the
local and global best solutions:

(7.4)

(7.5)

where

nm,n = particle velocity
pm,n = particle variables
r1, r2 = independent uniform random numbers
G1 = G2 = learning factors = 2
pm,n

local best = best local solution
pm,n

global best = best global solution

The PSO algorithm updates the velocity vector for each particle then adds that
velocity to the particle position or values. Velocity updates are influenced by
both the best global solution associated with the lowest cost ever found by a
particle and the best local solution associated with the lowest cost in the
present population. If the best local solution has a cost less than the cost of
the current global solution, then the best local solution replaces the best global
solution.The particle velocity is reminiscent of local minimizers that use deriv-
ative information, because velocity is the derivative of position. The constant
G1 is called the cognitive parameter. The constant G2 is called the social para-
meter. The advantages of PSO are that it is easy to implement and there are
few parameters to adjust.

The PSO is able to tackle tough cost functions with many local minima.
Figure 7.3 shows the initial random swarm set loose on the cost surface. The
particle swarming becomes evident as the generations pass (see Figures 7.4 
to 7.7). The largest group of particles ends up in the vicinity of the global
minimum and the next largest group is near the next lowest minimum. A few
other particles are roaming the cost surface at some distance away from the
two groups. Figure 7.8 shows plots of pm,n

local best and pm,n
global best as well as the pop-

ulation average as a function of generation. The particle pm,n
global best serves the

same function as elite chromosome in the GA. The chaotic swarming process
is best illustrated by following the path of one of the particles until it reaches
the global minimum (Figure 7.9). In this implementation the particles fre-
quently bounce off the boundaries.

7.3 ANT COLONY OPTIMIZATION (ACO)

Ants can find the shortest path to food by laying a pheromone (chemical) trail
as they walk. Other ants follow the pheromone trail to food. Ants that happen
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to pick the shorter path will create a strong trail of pheromone faster than the
ones choosing a longer path. Since stronger pheromone attracts ants better,
more and more ants choose the shorter path until eventually all ants have
found the shortest path. Consider the case of three possible paths to the food
source with one longer than the others.Ants choose each path with equal prob-
ability. Ants that went and returned on the shortest path will cause it to have
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Figure 7.3 Initial random swarm of 10 particles.

Figure 7.4 Swarm after 5 iterations.
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Figure 7.5 Swarm after 10 iterations.

Figure 7.6 Swarm after 15 iterations.

the most pheromone soonest. Consequently new ants will select that path first
and further reinforce the pheromone level on that path. Eventually all the ants
will follow the shortest path to the food.

The first ant colony optimization (ACO) algorithms were designed to solve
the traveling salesperson problem, because this problem closely resembles
finding the shortest path to a food source (Dorigo and Maria, 1997). Initial
attempts at an ACO algorithm were not very satisfying until the ACO algo-
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Figure 7.7 Swarm after 20 iterations.

Figure 7.8 Convergence of the PSO algorithm.

rithm was coupled with a local optimizer. One problem is premature conver-
gence to a less than optimal solution because too much virtual pheromone was
laid quickly. To avoid this stagnation, pheromone evaporation is implemented.
In other words, the pheromone associated with a solution disappears after a
period of time.

The ACO is a natural for the traveling salesperson problem. It begins with
a number of ants that follow a path around the different cities. Each ant



deposits a pheromone along the path. The algorithm begins by assigning each
ant to a randomly selected city. The next city is selected by a weighted prob-
ability that is a function of the strength of the pheromone laid on the path and
the distance of the city. The probability that ant k will travel from city m to
city n is given by

(7.6)

where

t = pheromone strength
q = cities on tour k that come after city m
a = pheromone weighting; when a = 0, closest city is selected
b = distance weighting; when b = 0, distance between cities is ignored

Short paths with high pheromone have the highest probability of selection.
On the initial paths, pheromone is laid on inefficient paths. Consequently 
some of this pheromone must evaporate in time or the algorithm will 
converge on an inefficient path. Early trials of ACO found that an elitist 
strategy is as important as it is with GAs. As a result the pheromone along 
the best path so far is given some weight in calculating the new 
pheromone levels. The pheromone update formula is given by (Bonabeau 
et al., 1999)
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Figure 7.9 Path taken by a single PSO particle.



(7.7)

where

tk
mn = pheromone laid by ant k between city m and city n

x = pheromone evaporation constant
e = elite path weighting constant
tmn

elite = pheromone laid on the best path found by the algorithm to this point

The ACO does well on a traveling salesperson problem with 30 cities. Figure
7.10 is the optimal path found by this algorithm. Its convergence is shown in
Figure 7.11. Other types of problems can be solved using ACO too.

7.4 GENETIC PROGRAMMING (GP)

Wouldn’t it be nice to get a computer to do what you want, without telling it
how to do it in great detail? Genetic programming (GP) accomplishes this goal
through applying a GA to writing computer programs (Koza, 1992). The vari-
ables are various programming constructs, and the output is a measure of how
well the program achieves its objectives. The GA operations of mutation,
reproduction (crossover) and cost calculation require only minor modifica-
tions. GP is a more complicated procedure because it must work with the vari-
able length structure of the program or function. A GP is a computer program
that writes other computer programs.
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Figure 7.10 ACO solution to 30 city traveling salesperson problem.



The computer programs written by GP are not in common languages such
as MATLAB or Fortran but in the more obscure artificial intelligence lan-
guage (AI) LISP (LISt Processor). Unlike most other languages, LISP uses
expressions but not program statements (Graham, 1995). The value resulting
from evaluating an expression can be embedded in other expressions. Scheme
is a more recent AI language and is a derivative of LISP that stresses con-
ceptual elegance and simplicity (Harvey and Wright, 1994). It is much more
compact than LISP. The list in LISP is an ordered sequence of elements. Ele-
ments are functions, names, numbers, or other lists. Lists are flexible because
the number or type of elements does not have to be specified in advance.

Each chromosome in the initial population of a GP is a program comprised
of random functions and terminals. Some examples of functions are addition,
subtraction, division, multiplication, and trigonometric functions. The terminal
set consists of the variables and constants of the programs. Figure 7.12 shows
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a small population of four polynomial functions.The parse tree representation
is below each polynomial.

Each program in the population is run and its cost evaluated. The cost is an
indicator of how well it solves the problem. Let’s assume the goal is to find a
polynomial that interpolates sin(x) for 0 £ x £ p. In this case the cost is the
sum of the squared difference between the interpolating function and sin(x).
As is often the case with many problems, the initial population of the GP does
not contain very good solutions (see Figure 7.13).

A new population of computer programs is created through selection,
crossover, and mutation. Programs are randomly selected from the population
using the same stochastic selection methods as in a GA. A node is randomly
selected in two parent chromosomes and the tree structure below these nodes
are exchanged to create new offspring. Figure 7.14 shows the offspring result-
ing from program A and program D in Figure 7.12 mating. The bold lines indi-
cate the part of the parse trees that were exchanged. The two parents
participating in crossover are usually of different sizes and shapes. Even if
identical parents are selected, two different offspring can result if the crossover
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Figure 7.13 Plots of chromosomes approximating sin(x).

Figure 7.14 Two offspring formed through mating parents B and D.



points are not at the same nodes. Mutations occur next. A subtree mutation
replaces a randomly selected subtree with a randomly generated subtree.
Another type of mutation replaces the function or variable in a node. Figure
7.15 shows subtree mutation applied to the left side of program B in Figure
7.12 and variable mutation on the right side.

Usually computer programs have many subroutine calls. GP operates on
subroutines as well as on mathematical operations. Some examples include:

• Subroutine duplication. Copies an existing subroutine in a program and
renames the copy. The subroutine calls in the program are randomly
divided between the old subroutine and the new subroutine.

• Argument duplication. Copies one argument of a subroutine, randomly
divides internal references to it, and preserves overall program seman-
tics by adjusting all calls to the subroutine.

• Subroutine creation. Generates a new subroutine.
• Architecture altering. Deletes a subroutine. It may also add and delete

automatically defined iterations, automatically defined loops, automati-
cally defined recursions, and automatically defined stores (memory).

A GP works best for problems that do not have a single best solution and for
problems with dynamically changing variables. There has been some concern
over the robustness of GP solutions (Kushchu, 2002), where robustness is the
ability of the program to arrive at a good solution when applied to an envi-
ronment that is similar to the one it was evolved for. Many researchers have
successfully used GP on a wide variety of problems, including automated 
synthesis of controllers, circuits, antennas, genetic networks, and metabolic
pathways. Koza (1994) and Koza et al. (1999, 2003) provide a wide range 
of examples, computer code, and video of GP applications.

Koza reports that GPs are recreating previously patented electronic inven-
tions (Koza, 2003). A few of these inventions have even been improved upon.
It is possible for the GP to work with evolvable hardware. An excellent ex-
ample of evolvable hardware is a rapidly reconfigurable field-programmable
gate array. These chips can be reconfigured to perform desired logical opera-
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Figure 7.15 Two possible types of mutation on chromosome A.



tions via commands from a computer. Although circuit designs developed by
the GP may outperform previous “best” designs, understanding how or why
they work is often difficult. In addition the GP designs may contain redundant
or extraneous components.

7.5 CULTURAL ALGORITHMS

The advancement or optimization of the human race cannot be totally attrib-
uted to genetics and evolution. Human interactions, societal behaviors, and
other factors play major roles in the optimization process as well. Since social
interactions allow for faster adaptation and improvement than genetics and
evolution, an optimization algorithm should include those societal factors that
would help speed convergence. These algorithms are known as cultural algo-
rithms (Reynolds, 1994).

As with a GA, these algorithms begin with a random population called 
a civilization. The civilization has societies that consist of clusters of points 
or individuals. Each society has a leader. Individuals within a society only
interact with others in the same society. This behavior is analogous to a 
local search. Society leaders, however, interact not only with other individuals
in the same society but with leaders from other societies as well. A leader 
may leave its current society to join a society that performing at a higher level.
This leader migration allows high-performing societies to flourish while 
diminishing low-performing societies. This behavior is analogous to global
search.

The hope is that these algorithms will produce excellent results faster than
a GA. They are reminiscent of the parallel island GAs. The interested reader
can find pseudocode for this type of algorithm in the literature (Ray and Liew,
2003).

7.6 EVOLUTIONARY STRATEGIES

GAs are not the only type of evolutionary computing methods. Modeling bio-
logical evolution on a computer began in the 1960s. Rechenberg (1965) intro-
duced evolutionary strategies in Europe. His first versions of the algorithms
used real-valued parameters and began with a parent and a mutated version
of a parent. Whichever had the highest cost was discarded. The winner pro-
duced a mutated version and the process repeated. Populations and crossover
were not incorporated until later years. A general version of the algorithm,
known as the (m + l) evolution strategy, was developed (Bäck, 1997). In this
strategy, m parents produce l offspring. In succeeding generations only the best
m of the l offspring and m parents are allowed to survive until the next gen-
eration.Another variant known as the (m, l) replaces the parents with the best
m offspring. None of the parents from the previous generation are allowed to
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produce offspring again. This approach does not use elitism. It accepts a lower
cost at a given generation in the hope that a better cost will be found in a
future generation. Fogel introduced the concept of evolutionary programming
in the United States at about the same time as Rechenberg’s work (Fogel et
al., 1966). For more detailed information on evolutionary algorithms, see
(Schwefel, 1995).

7.7 THE FUTURE OF GENETIC ALGORITHMS

Some optimization problems are so big that they have not been totally solved
to date. Ahuja and Orlin (2003) report how new optimization algorithms are
successfully improving solutions to very large problems. In this case very large-
scale neighborhood (VLSN) techniques were used on the airline fleet sched-
uling problem. In this problem an airline has to schedule planes into and out
of airports in an efficient manner that maximizes revenue minus operating
costs while satisfying constraints such as size of plane, number of expected 
passengers, and number of planes leaving an airport matching the number
arriving. At the same time flight crews must be scheduled for all planes. The
assignments are broken into four separate problems: (1) fleet assignment, (2)
through assignment (a plane that stops in one city then proceeds to another
city), (3) aircraft routing, and (4) crew scheduling. Although these are each
separate models, they must be coupled to obtain the best overall solution. Real
life problems such as this will continue to challenge optimization routines for
years to come.

We return to the hiking analogy of Chapter 1 and imagine ourselves search-
ing for the lowest point in Rocky Mountain National Park. We can think of
the GA as a new tool to use, analogous to carrying a global positioning system
(GPS) device. We can take this new tool to any position in the park and take
a reading of the three-dimensional coordinates. We know the result of the cost
function (the elevation) as well as the latitude and longitude of the location.
The GA has methods such as crossover and mutation to steer us into the
correct portions of the solution space, akin to the topographic maps that can
be stored in many GPS systems to point us in the direction of the lowest point.
The tool itself is rapidly evolving to work in new ways to solve bigger prob-
lems in much larger topological landscapes. Koza et al. (2003) have submitted
patent applications on genetically programmed inventions. Yet they have only
scratched the surface of genetic programming and evolvable hardware. How
many of the inventions of the future will be done with computer intelligence?
We saw in Chapter 4 how GAs are being used to produce new forms of music
and art. Many of those applications (but not all) had some interface with a
human critic to help train the algorithm on what is “good.” Does the computer
become the artist?

We humans are constantly evolving new ways of looking at the world and
doing things. We are always inventing new problems and new ways of solving
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them. That is what we call progress. The relatively new invention of the GPS
has revolutionized our ability to know exactly where we are when hiking. The
GA has demonstrated that it can easily solve many traditionally challenging
optimization problems. We immediately found new uses for our new tools. We
combine our new tools with other evolving tools. We put GPS devices in cell
phones in the same way we use GAs to train artificial neural networks. Auto-
motive navigation is being revolutionized by the GPS, just as major schedul-
ing problems are being solved by the GA. The GPS is being used in guiding
satellite clusters and the GA is being used to improve the design of airplanes.
It is a never ending process and that is what makes life, and its changes,
interesting.
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EXERCISES

1. Use SA to find the minimum of function _____ in Appendix I using the
following cooling schedules:

a. Linearly decreasing: Tn = T0 - n(T0 - Tn)/N
b. Geometrically decreasing: Tn = 0.99Tn-1

c. Hayjek optimal: Tn = c/log(1 + n), where c is the smallest variation re-
quired to get out of any local minimum.

Which schedule works best?

2. What values do you recommend for the PSO learning factors? Average
runs for several different cost functions to justify your conclusions.

3. Find the minimum of _____ (from Appendix I) using PSO.

4. Develop a hybrid PSO algorithm and test it.

5. Compare ACO with a GA for solving the traveling salesperson problem
as a function of the number of cities.

6. Demonstrate the importance using ACO of the evaporation constant in
solving the traveling salesperson problem.

7. Modify the ACO code to optimize the function _____ in Appendix I.
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8. Implement a cultural algorithm to optimize the function _____ in 
Appendix I.

9. Write a (m + l) evolution strategy algorithm to optimize the function _____
in Appendix I.

10. Write a (m, l) evolution strategy algorithm to optimize the function _____
in Appendix I.

11. Compare the (m, l) and (m + l) evolution strategy optimization algorithms.
Which do you recommend and why?

12. For optimizing the function _____ in Appendix I, compare one or more of
the following algorithms:

a. Nelder-Mead downhill simplex
b. BFGS
c. DFP
d. Steepest descent
e. Random search
f. Binary GA
g. Continuous GA
h. mGA
i. SA
j. PSO
k. ACO
l. (m, l) evolution strategy algorithm

m. (m + l) evolution strategy algorithm
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APPENDIX I

Test Functions

205

In order to determine how well an optimization algorithm works, a variety of
test functions have been used as a check. We’ve listed 16 in this appendix. In
each case we give a general form of the function, plot its value in one or two
dimensions, give the global optimum in one or two dimensions, and list the
domain. Some of the functions are generalizable to N dimensions. MATLAB
code for these functions appear in Appendix II. Some of the research into
developing test functions is reported in the references.
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APPENDIX II

MATLAB Code

MATLAB is a commonly used program for computer modeling. Its code is
relatively straightforward. So even though you may not use MATLAB, it has
a pseudocode flavor that should be easy to translate into your favorite pro-
gramming language. If you wish to learn about MATLAB or reference all the
manuals on line, go to www.mathworks.com for help. There are many demos,
free software, and other useful items as well as all the MATLAB documenta-
tion you would ever need. An excellent version is also available for students.
Many of the programs we have used in this book are listed in this appendix
and come on the included CD. All the plots and graphs in this book were
created with MATLAB version 6.5. We have listed the MATLAB code in the
appendix in case the CD gets separated from the book.

PROGRAM 1: BINARY GENETIC ALGORITHM

%           Binary Genetic Algorithm
%
%  minimizes the objective function designated in ff
%  Before beginning, set all the parameters in parts

I, II, and III
%  Haupt & Haupt
%  2003

clear
%_______________________________________________________
% I. Setup the GA
ff=’testfunction’; % objective function
npar=2; % number of optimization variables

%_______________________________________________________
% II. Stopping criteria
maxit=100; % max number of iterations
mincost=-9999999; % minimum cost

Practical Genetic Algorithms, Second Edition, by Randy L. Haupt and Sue Ellen Haupt.
ISBN 0-471-45565-2 Copyright © 2004 John Wiley & Sons, Inc.
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%_______________________________________________________
% III. GA parameters
popsize=16; % set population size
mutrate=.15; % set mutation rate
selection=0.5; % fraction of population 

% kept
nbits=8;           % number of bits in each 

% parameter
Nt=nbits*npar;           % total number of bits 

% in a chormosome
keep=floor(selection*popsize); % #population members 

% that survive

%_______________________________________________________
% Create the initial population
iga=0; % generation counter 

% initialized
pop=round(rand(popsize,Nt)); % random population of 

% 1s and 0s
par=gadecode(pop,0,10,nbits); % convert binary to 

% continuous values
cost=feval(ff,par); % calculates population 

% cost using ff
[cost,ind]=sort(cost); % min cost in element 1
par=par(ind,:);pop=pop(ind,:); % sorts population with 

% lowest cost first
minc(1)=min(cost); % minc contains min of 

% population
meanc(1)=mean(cost); % meanc contains mean 

% of population

%_______________________________________________________
% Iterate through generations
while iga<maxit

iga=iga+1; % increments generation counter

%_______________________________________________________
% Pair and mate
M=ceil((popsize-keep)/2); % number of matings
prob=flipud([1:keep]’/sum([1:keep]));% weights 

% chromosomes based 
% upon position in 
% list

odds=[0 cumsum(prob(1:keep))’]; % probability
distribution function
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pick1=rand(1,M); % mate #1
pick2=rand(1,M); % mate #2

% ma and pa contain the indicies of the chromosomes 
% that will mate
ic=1;
while ic<=M
for id=2:keep+1

if pick1(ic)<=odds(id) & pick1(ic)>odds(id-1)
ma(ic)=id-1;

end % if
if pick2(ic)<=odds(id) & pick2(ic)>odds(id-1)

pa(ic)=id-1;
end % if

end % id
ic=ic+1;

end % while

%_______________________________________________________
% Performs mating using single point crossover
ix=1:2:keep; % index of mate #1
xp=ceil(rand(1,M)*(Nt-1)); % crossover point
pop(keep+ix,:)=[pop(ma,1:xp) pop(pa,xp+1:Nt)];

% first offspring
pop(keep+ix+1,:)=[pop(pa,1:xp) pop(ma,xp+1:Nt)];

% second offspring

%_______________________________________________________
% Mutate the population
nmut=ceil((popsize-1)*Nt*mutrate); % total number 

% of mutations
mrow=ceil(rand(1,nmut)*(popsize-1))+1; % row to mutate
mcol=ceil(rand(1,nmut)*Nt); % column to mutate
for ii=1:nmut

pop(mrow(ii),mcol(ii))=abs(pop(mrow(ii),mcol(ii))-1);
% toggles bits

end % ii

%_______________________________________________________
% The population is re-evaluated for cost
par(2:popsize,:)=gadecode(pop(2:popsize,:),0,10,nbits);
% decode
cost(2:popsize)=feval(ff,par(2:popsize,:));



%_______________________________________________________
% Sort the costs and associated parameters
[cost,ind]=sort(cost);
par=par(ind,:); pop=pop(ind,:);

%_______________________________________________________
% Do statistics for a single nonaveraging run
minc(iga+1)=min(cost);
meanc(iga+1)=mean(cost);

%_______________________________________________________
% Stopping criteria
if iga>maxit | cost(1)<mincost

break
end

[iga cost(1)]

end %iga

%_______________________________________________________
% Displays the output
day=clock;
disp(datestr(datenum(day(1),day(2),day(3),day(4),day(5),
day(6)),0))
disp([‘optimized function is ‘ ff])
format short g
disp([‘popsize = ‘ num2str(popsize) ‘ mutrate = ‘
num2str(mutrate) ‘ # par = ‘ num2str(npar)])
disp([‘#generations=’ num2str(iga) ‘ best cost=’
num2str(cost(1))])
disp([‘best solution’])
disp([num2str(par(1,:))])
disp(‘binary genetic algorithm’)
disp([‘each parameter represented by ‘ num2str(nbits)
‘ bits’])
figure(24)
iters=0:length(minc)-1;
plot(iters,minc,iters,meanc,’–’);
xlabel(‘generation’);ylabel(‘cost’);
text(0,minc(1),’best’);text(1,minc(2),’population
average’)
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PROGRAM 2: CONVERTS BINARY CHROMOSOME TO 
CONTINUOUS VARIABLES

%   gadecode.m
%     Decodes binary encripted parameters
%
%           f=gadecode(chrom,lo,hi,bits,gray)
%           chrom = population
%           lo = minimum parameter value
%           hi = maximum parameter value
%           bits = number of bits/parameter

% Haupt & Haupt
% 2003

function f=gadecode(chrom,lo,hi,bits)

[M,N]=size(chrom);
npar=N/bits; % number of variables
quant=(0.5.^[1:bits]’); % quantization levels
quant=quant/sum(quant); % quantization levels
normalized
ct=reshape(chrom’,bits,npar*M)’;% each column contains 

% one variable
par=((ct*quant)*(hi-lo)+lo); % DA conversion and 

% unnormalize varaibles
f=reshape(par,npar,M)’; % reassemble population

PROGRAM 3: CONTINUOUS GENETIC ALGORITHM

%           Continuous Genetic Algorithm
%
%  minimizes the objective function designated in ff
%  Before beginning, set all the parameters in parts 
%  I, II, and III
%  Haupt & Haupt
%  2003

%_______________________________________________________
% I Setup the GA
ff=’testfunction’; % objective function
npar=2; % number of optimization variables
varhi=10; varlo=0; % variable limits
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%_______________________________________________________
% II Stopping criteria
maxit=100; % max number of iterations
mincost=-9999999; % minimum cost

%_______________________________________________________
% III GA parameters
popsize=12; % set population size
mutrate=.2; % set mutation rate
selection=0.5; % fraction of population kept
Nt=npar;      % continuous parameter GA Nt=#variables

keep=floor(selection*popsize); % #population
% members that survive

nmut=ceil((popsize-1)*Nt*mutrate); % total number of 
% mutations

M=ceil((popsize-keep)/2); % number of matings

%_______________________________________________________
% Create the initial population
iga=0; % generation counter
initialized
par=(varhi-varlo)*rand(popsize,npar)+varlo;  % random
cost=feval(ff,par); % calculates population cost 

% using ff
[cost,ind]=sort(cost); % min cost in element 1
par=par(ind,:); % sort continuous
minc(1)=min(cost); % minc contains min of
meanc(1)=mean(cost); % meanc contains mean of
population

%_______________________________________________________
% Iterate through generations
while iga<maxit

iga=iga+1;         % increments generation counter

%_______________________________________________________
% Pair and mate
M=ceil((popsize-keep)/2); % number of matings
prob=flipud([1:keep]’/sum([1:keep])); % weights 

% chromosomes
odds=[0 cumsum(prob(1:keep))’]; % probability 

% distribution 
% function

pick1=rand(1,M); % mate #1
pick2=rand(1,M); % mate #2
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% ma and pa contain the indicies of the chromosomes 
% that will mate
ic=1;
while ic<=M
for id=2:keep+1

if pick1(ic)<=odds(id) & pick1(ic)>odds(id-1)
ma(ic)=id-1;

end
if pick2(ic)<=odds(id) & pick2(ic)>odds(id-1)

pa(ic)=id-1;
end

end
ic=ic+1;

end

%_______________________________________________________
% Performs mating using single point crossover
ix=1:2:keep; % index of mate #1
xp=ceil(rand(1,M)*Nt); % crossover point
r=rand(1,M); % mixing parameter
for ic=1:M
xy=par(ma(ic),xp(ic))-par(pa(ic),xp(ic)); % ma and pa

% mate
par(keep+ix(ic),:)=par(ma(ic),:); % 1st offspring
par(keep+ix(ic)+1,:)=par(pa(ic),:); % 2nd offspring
par(keep+ix(ic),xp(ic))=par(ma(ic),xp(ic))-r(ic).*xy;
% 1st
par(keep+ix(ic)+1,xp(ic))=par(pa(ic),xp(ic))+r(ic).*xy;
% 2nd
if xp(ic)<npar % crossover when last variable not

selected
par(keep+ix(ic),:)=[par(keep+ix(ic),1:xp(ic))
par(keep+ix(ic)+1,xp(ic)+1:npar)];
par(keep+ix(ic)+1,:)=[par(keep+ix(ic)+1,1:xp(ic))
par(keep+ix(ic),xp(ic)+1:npar)];

end % if
end

%_______________________________________________________
% Mutate the population
mrow=sort(ceil(rand(1,nmut)*(popsize-1))+1);
mcol=ceil(rand(1,nmut)*Nt);
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for ii=1:nmut
par(mrow(ii),mcol(ii))=(varhi-varlo)*rand+varlo;  

% mutation
end % ii

%_______________________________________________________

% The new offspring and mutated chromosomes are 
% evaluated
cost=feval(ff,par);

%_______________________________________________________
% Sort the costs and associated parameters
[cost,ind]=sort(cost);
par=par(ind,:);

%_______________________________________________________
% Do statistics for a single nonaveraging run

minc(iga+1)=min(cost);
meanc(iga+1)=mean(cost);

%_______________________________________________________
% Stopping criteria
if iga>maxit | cost(1)<mincost

break
end

[iga cost(1)]

end %iga

%_______________________________________________________
% Displays the output
day=clock;
disp(datestr(datenum(day(1),day(2),day(3),day(4),day(5),
day(6)),0))
disp([‘optimized function is ‘ ff])
format short g
disp([‘popsize = ‘ num2str(popsize) ‘ mutrate = ‘
num2str(mutrate) ‘ # par = ‘ num2str(npar)])
disp([‘#generations=’ num2str(iga) ‘ best cost=’
num2str(cost(1))])
disp([‘best solution’])
disp([num2str(par(1,:))])
disp(‘continuous genetic algorithm’)
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figure(24)
iters=0:length(minc)-1;
plot(iters,minc,iters,meanc,’–’);
xlabel(‘generation’);ylabel(‘cost’);
text(0,minc(1),’best’);text(1,minc(2),’population
average’)

PROGRAM 4: PARETO GENETIC ALGORITHM

%           Pareto Genetic Algorithm
%
%  minimizes the objective function designated in ff
%  All optimization variables are normalized between 0
%  and 1.
% ff must map variables to actual range
%  Haupt & Haupt
%  2003

%_______________________________________________________
% Setup the GA
ff=’testfunction’; % objective function
npar=4; % number of optimization variables

%_______________________________________________________
% Stopping criteria
maxit=50; % max number of iterations
mincost=.001; % minimum cost

%_______________________________________________________
% GA parameters
selection=0.5; % fraction of population kept
popsize=100;
keep=selection*popsize;
M=ceil((popsize-keep)/2); % number of matings
odds=1;
for ii=2:keep

odds=[odds ii*ones(1,ii)];
end
odds=keep+1-odds;
Nodds=length(odds);
mutrate=0.1;          % mutation rate
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%_______________________________________________________
% Create the initial population
iga=0; % generation counter initialized
pop=rand(popsize,npar); % random population of 

% continuous values
fout=feval(ff,pop); % calculates population cost 

% using ff

%_______________________________________________________
% Iterate through generations
while iga<maxit

iga=iga+1;                  % increments
generation counter
cost(1:4,:)

[g,ind]=sort(fout(:,1));
pop=pop(ind,:);  % sorts chromosomes
h=fout(ind,2);
ct=0; rank=1;
q=0;
while ct<popsize

for ig=1:popsize
if h(ig)<=min(h(1:ig))

ct=ct+1;
q(ct)=ig;
cost(ct,1)=rank;

end
if rank==1

px=g(q);py=h(q);
elite=length(q);

end
if ct==popsize; break; end

end
rank=rank+1;

end
pop=pop(q,:);
figure(1); clf;plot(g,h,’.’,px,py); axis([0 1 0 1]);
axis square pause
[cost,ind]=sort(cost);
pop=pop(ind,:);

% tournament selection
Ntourn=2;
picks=ceil(keep*rand(Ntourn,M));
[c,pt]=min(cost(picks));
for ib=1:M
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ma(ib)=picks(pt(ib),ib);
end
picks=ceil(keep*rand(Ntourn,M));
[c,pt]=min(cost(picks));
for ib=1:M

pa(ib)=picks(pt(ib),ib);
end

%_______________________________________________________
% Performs mating

ix=1:2:keep; % index of mate #1
xp=floor(rand(1,M)*npar); % crossover point
r=rand(1,M); % mixing parameter
xy=pop(ma+popsize*xp)-pop(pa+popsize*xp);
% mix from ma and pa
pop(keep+ix+popsize*xp)=pop(ma+popsize*xp)-r.*xy;
% 1st offspring
pop(keep+ix+1+popsize*xp)=pop(pa+popsize*xp)+r.*xy;
% 2nd offspring
for ic=1:M/2
if xp(ic)<npar % perform crossover when last 

% variable not selected
pop(keep+ix(ic),:)=[pop(ma(ic),1:xp(ic))
pop(pa(ic),xp(ic)+1:npar)];
pop(keep+ix(ic)+1,:)=[pop(pa(ic),1:xp(ic))
pop(ma(ic),xp(ic)+1:npar)];
end % if
end % end ic
pop(1:4,:)

%_______________________________________________________
% Mutate the population
nmut=ceil((popsize-elite)*npar*mutrate);% total number 

% of mutations
mrow=ceil(rand(1,nmut)*(popsize-elite))+elite;
mcol=ceil(rand(1,nmut)*npar);
mutindx=mrow+(mcol-1)*popsize;
pop(mutindx)=rand(1,nmut);

%_______________________________________________________
% The new offspring and mutated chromosomes are
evaluated for cost
row=sort(rem(mutindx,popsize));
iq=1; rowmut(iq)=row(1);
for ic=2:nmut
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if row(ic)>keep;break;end
if row(ic)>rowmut(iq)

iq=iq+1; rowmut(iq)=row(ic);
end

end
if rowmut(1)==0;rowmut=rowmut(2:length(rowmut));end
fout(rowmut,:)=feval(ff,pop(rowmut,:));
fout(keep+1:popsize,:)=feval(ff,pop(keep+1:popsize,:));
fout(keep+1:popsize,:)=feval(ff,pop(keep+1:popsize,:));

%_______________________________________________________
% Stopping criteria
if iga>maxit

break
end

[iga cost(1) fout(1,:)]

end %iga

%_______________________________________________________
% Displays the output

day=clock;

disp(datestr(datenum(day(1),day(2),day(3),day(4),day(
5),day(6)),0))
disp([‘optimized function is ‘ ff])
format short g
disp([‘popsize = ‘ num2str(popsize) ‘ mutrate = ‘
num2str(mutrate) ‘ # par = ‘ num2str(npar)])
disp([‘Pareto front’])
disp([num2str(pop)])

disp(‘continuous parameter genetic algorithm’)

PROGRAM 5: PERMUTATION GENETIC ALGORITHM

%           Genetic Algorithm for permuation problems
%
%  minimizes the objective function designated in ff

clear
global iga x y

%  Haupt & Haupt
%  2003
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%_______________________________________________________
% Setup the GA
ff=’tspfun’; % objective function
npar=20; % # optimization variables
Nt=npar; % # columns in population matrix
rand(‘state’,3)
x=rand(1,npar);y=rand(1,npar); % cities are at 

% (xcity,ycity)

%_______________________________________________________
% Stopping criteria
maxit=10000; % max number of iterations

%_______________________________________________________
% GA parameters
popsize=20; % set population size
mutrate=.1; % set mutation rate
selection=0.5; % fraction of population kept

keep=floor(selection*popsize); % #population members 
% that survive

M=ceil((popsize-keep)/2); % number of matings
odds=1;
for ii=2:keep

odds=[odds ii*ones(1,ii)];
end
Nodds=length(odds);

%_______________________________________________________
% Create the initial population
iga=0; % generation counter initialized
for iz=1:popsize

pop(iz,:)=randperm(npar); % random population
end

cost=feval(ff,pop); % calculates population cost 
% using ff

[cost,ind]=sort(cost); % min cost in element 1
pop=pop(ind,:); % sort population with lowest 

% cost first
minc(1)=min(cost); % minc contains min of 

% population
meanc(1)=mean(cost); % meanc contains mean of population

PROGRAM 5: PERMUTATION GENETIC ALGORITHM 223



%_______________________________________________________
% Iterate through generations
while iga<maxit

iga=iga+1;      % increments generation counter

%_______________________________________________________
% Pair and mate

pick1=ceil(Nodds*rand(1,M)); % mate #1
pick2=ceil(Nodds*rand(1,M)); % mate #2

% ma and pa contain the indicies of the parents
ma=odds(pick1);
pa=odds(pick2);

%_______________________________________________________
% Performs mating
for ic=1:M
mate1=pop(ma(ic),:);
mate2=pop(pa(ic),:);
indx=2*(ic-1)+1;   % starts at one and skips every 

% other one
xp=ceil(rand*npar);   % random value between 1 and N
temp=mate1;
x0=xp;

while mate1(xp)~=temp(x0)
mate1(xp)=mate2(xp);
mate2(xp)=temp(xp);
xs=find(temp==mate1(xp));
xp=xs;

end

pop(keep+indx,:)=mate1;
pop(keep+indx+1,:)=mate2;

end

%_______________________________________________________
% Mutate the population
nmut=ceil(popsize*npar*mutrate);

for ic = 1:nmut
row1=ceil(rand*(popsize-1))+1;
col1=ceil(rand*npar);
col2=ceil(rand*npar);
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temp=pop(row1,col1);
pop(row1,col1)=pop(row1,col2);
pop(row1,col2)=temp;
im(ic)=row1;

end
cost=feval(ff,pop);

%_______________________________________________________
% Sort the costs and associated parameters
part=pop; costt=cost;
[cost,ind]=sort(cost);
pop=pop(ind,:);

%_______________________________________________________
% Do statistics

minc(iga)=min(cost);
meanc(iga)=mean(cost);

end %iga

%_______________________________________________________
% Displays the output

day=clock;
disp(datestr(datenum(day(1),day(2),day(3),day(4),day(
5),day(6)),0))
disp([‘optimized function is ‘ ff])
format short g
disp([‘popsize = ‘ num2str(popsize) ‘ mutrate = ‘
num2str(mutrate) ‘ # par = ‘ num2str(npar)])
disp([‘ best cost=’ num2str(cost(1))])

disp([‘best solution’])
disp([num2str(pop(1,:))])

figure(2)
iters=1:maxit;
plot(iters,minc,iters,meanc,’––’);
xlabel(‘generation’);ylabel(‘cost’);

figure(1);plot([x(pop(1,:)) x(pop(1,1))],[y(pop(1,:))
y(pop(1,1))],x,y,’o’);axis square
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PROGRAM 6: TRAVELING SALESPERSON PROBLEM 
COST FUNCTION

% cost function for traveling salesperson problem

%  Haupt & Haupt
%  2003

function dist=tspfun(pop)

global iga x y

[Npop,Ncity]=size(pop);
tour=[pop pop(:,1)];

%distance between cities
for ic=1:Ncity

for id=1:Ncity
dcity(ic,id)=sqrt((x(ic)-x(id))^2+(y(ic)-
y(id))^2);

end % id
end %ic

% cost of each chromosome
for ic=1:Npop

dist(ic,1)=0;
for id=1:Ncity

dist(ic,1)=dist(ic)+dcity(tour(ic,id),tour(ic,i
d+1));

end % id
end % ic

PROGRAM 7: PARTICLE SWARM OPTIMIZATION

% Particle Swarm Optimization - PSO

% Haupt & Haupt
% 2003

clear
ff = ‘testfunction’; % Objective Function

% Initializing variables
popsize = 10;   % Size of the swarm
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npar = 2; % Dimension of the problem
maxit = 100; % Maximum number of iterations
c1 = 1; % cognitive parameter
c2 = 4-c1; % social parameter
C=1; % constriction factor

% Initializing swarm and velocities
par=rand(popsize,npar);     % random population of 

% continuous values
vel = rand(popsize,npar);   % random velocities

% Evaluate initial population
cost=feval(ff,par); % calculates population cost using 

% ff
minc(1)=min(cost); % min cost
meanc(1)=mean(cost); % mean cost
globalmin=minc(1); % initialize global minimum

% Initialize local minimum for each particle
localpar = par;    % location of local minima
localcost = cost;  % cost of local minima

% Finding best particle in initial population
[globalcost,indx] = min(cost);
globalpar=par(indx,:);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Start iterations
iter = 0;       % counter

while iter < maxit
iter = iter + 1;

% update velocity = vel
w=(maxit-iter)/maxit; %inertia weiindxht
r1 = rand(popsize,npar);    % random numbers
r2 = rand(popsize,npar);    % random numbers
vel = C*(w*vel + c1 *r1.*(localpar-par) +

c2*r2.*(ones(popsize,1)*globalpar-par));

% update particle positions
par = par + vel;    % updates particle position
overlimit=par<=1;

PROGRAM 7: PARTICLE SWARM OPTIMIZATION 227



underlimit=par>=0;
par=par.*overlimit+not(overlimit);
par=par.*underlimit;

% Evaluate the new swarm
cost = feval(ff,par);   % evaluates cost of swarm

% Updating the best local position for each particle
bettercost = cost < localcost;
localcost = localcost.*not(bettercost) +

cost.*bettercost;
localpar(find(bettercost),:) =

par(find(bettercost),:);

% Updating index g
[temp, t] = min(localcost);

if temp<globalcost
globalpar=par(t,:); indx=t; globalcost=temp;

end
[iter globalpar globalcost] % print output each 

% iteration
minc(iter+1)=min(cost); % min for this 

% iteration
globalmin(iter+1)=globalcost; % best min so far
meanc(iter+1)=mean(cost); % avg. cost for 

% this iteration

end% while

figure(24)
iters=0:length(minc)-1;
plot(iters,minc,iters,meanc,’–’,iters,globalmin,’:’);
xlabel(‘generation’);ylabel(‘cost’);
text(0,minc(1),’best’);text(1,minc(2),’population
average’)

PROGRAM 8: ANT COLONY OPTIMIZATION

%  ACO: ant colony optimization for solving the
traveling salesperson
%  problem

% Haupt & Haupt
% 2003
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clear
rand(‘state’,11)
Ncity=30; % number of cities on tour
Nants=Ncity; % number of ants=number of cities

% city locations
xcity=rand(1,Ncity);ycity=rand(1,Ncity); % cities are
located at (xcity,ycity)

%distance between cities
for ic=1:Ncity

for id=1:Ncity
dcity(ic,id)=sqrt((xcity(ic)-xcity(id))^2+(ycity(ic)-
ycity(id))^2);

end % id
end %ic

vis=1./dcity; % visibility equals inverse 
% of distance

phmone=.1*ones(Ncity,Ncity);% initialized pheromones 
% between cities

maxit=600; % max number of iterations

% a1=0 - closest city is selected
% be=0 - algorithm only works w/ pheromones and not 
% distance of city
% Q - close to the lenght of the optimal tour
% rr - trail decay
a=2;b=6;rr=0.5;Q=sum(1./(1:8));dbest=9999999;e=5;

% initialize tours
for ic=1:Nants

tour(ic,:)=randperm(Ncity);
end % ic
tour(:,Ncity+1)=tour(:,1); % tour ends on city it
starts with

for it=1:maxit
% find the city tour for each ant
% st is the current city
% nxt contains the remaining cities to be visited

for ia=1:Nants
for iq=2:Ncity-1

[iq tour(ia,:)];
st=tour(ia,iq-1); nxt=tour(ia,iq:Ncity);
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prob=((phmone(st,nxt).^a).*(vis(st,nxt).^b)).
sum((phmone(st,nxt).^a).*(vis(st,nxt).^b));

rcity=rand;
for iz=1:length(prob)

if rcity<sum(prob(1:iz))
newcity=iq-1+iz;               % next city

to be visited
break

end % if
end % iz
temp=tour(ia,newcity); % puts the new city 

% selected next in line
tour(ia,newcity)=tour(ia,iq);
tour(ia,iq)=temp;

end % iq
end % ia

% calculate the length of each tour and pheromone
distribution
phtemp=zeros(Ncity,Ncity);
for ic=1:Nants

dist(ic,1)=0;
for id=1:Ncity

dist(ic,1)=dist(ic)+dcity(tour(ic,id),tour(ic,id+1));
phtemp(tour(ic,id),tour(ic,id+1))=Q/dist(ic,1);

end % id
end % ic

[dmin,ind]=min(dist);
if dmin<dbest

dbest=dmin;
end % if

% pheromone for elite path
ph1=zeros(Ncity,Ncity);

for id=1:Ncity
ph1(tour(ind,id),tour(ind,id+1))=Q/dbest;

end % id

% update pheromone trails
phmone=(1-rr)*phmone+phtemp+e*ph1;
dd(it,:)=[dbest dmin];
[it dmin dbest]
end %it
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[tour,dist]
figure(1)
plot(xcity(tour(ind,:)),ycity(tour(ind,:)),xcity,ycity,’
o’)
axis square
figure(2);plot([1:maxit],dd(:,1),[1:maxit],dd(:,2),’–’)

PROGRAM 9: TEST FUNCTIONS

% Test functions for optimization
% These are the test functions that appear in Appendix I.
% Set funnum to the function you want to use.
% funnum=17 is for a MOO function

% Haupt & Haupt
% 2003

function f=testfunction(x)

funnum=16;

if funnum==1    %F1
f=abs(x)+cos(x);

elseif funnum==2    %F2
f=abs(x)+sin(x);

elseif funnum==3    %F3
f=x(:,1).^2+x(:,2).^2;

elseif funnum==4    %F4
f=100*(x(:,2).^2-x(:,1)).^2+(1-x(:,1)).^2;

elseif funnum==5    %F5
f(:,1)=sum(abs(x’)-10*cos(sqrt(abs(10*x’))))’;

elseif funnum==6    %F6
f=(x.^2+x).*cos(x);

elseif funnum==7    %F7
f=x(:,1).*sin(4*x(:,1))+1.1*x(:,2).*sin(2*x(:,2));

elseif funnum==8    %F8
f=x(:,2).*sin(4*x(:,1))+1.1*x(:,1).*sin(2*x(:,2));

elseif funnum==9    %F9

f(:,1)=x(:,1).^4+2*x(:,2).^4+randn(length(x(:,1)),1);
elseif funnum==10   %F10

f(:,1)=20+sum(x’.^2-10*cos(2*pi*x’))’;
elseif funnum==11   %F11

f(:,1)=1+sum(abs(x’).^2/4000)’-prod(cos(x’))’;
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elseif funnum==12   %F12
f(:,1)=.5+(sin(sqrt(x(:,1).^2+x(:,2).^2).^2)-
.5)./(1+.1*(x(:,1).^2+x(:,2).^2));
elseif funnum==13   %F13

aa=x(:,1).^2+x(:,2).^2;
bb=((x(:,1)+.5).^2+x(:,2).^2).^0.1;

f(:,1)=aa.^0.25.*sin(30*bb).^2+abs(x(:,1))+abs(x(:,2));
elseif funnum==14   %F14

f(:,1)=besselj(0,x(:,1).^2+x(:,2).^2)+abs(1-
x(:,1))/10+abs(1-x(:,2))/10;
elseif funnum==15   %F15
f(:,1)=-exp(.2*sqrt((x(:,1)-1).^2+(x(:,2)-
1).^2)+(cos(2*x(:,1))+sin(2*x(:,1))));
elseif funnum==16   %F16
f(:,1)=x(:,1).*sin(sqrt(abs(x(:,1)-(x(:,2)+9))))-
(x(:,2)+9).*sin(sqrt(abs(x(:,2)+0.5*x(:,1)+9)));
elseif funnum==17   %MOO function

x=x+1;
f(:,1)=(x(:,1)+x(:,2).̂ 2+sqrt(x(:,3))+1./x(:,4))/8.5;
f(:,2)=(1./x(:,1)+1./x(:,2)+x(:,3)+x(:,4))/6;

end
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APPENDIX III

High-Performance Fortran Code

The MATLAB code of Appendix II was translated into High-Performance
Fortran (HPF), a version of Fortran 95 designed specifically for parallel
machines. If you don’t have a parallel machine, the HPF directives all begin
with !HPF$, which looks like a comment statement to other versions of
Fortran. This is a master–slave parallel implementation (see Chapter 5). Note
that it has been specifically tuned for a MIMD Beowulf cluster. It contains
commands (e.g., FORALL) that may not be backward compatible with older
versions of Fortran. The subroutine, ff, is the cost function that solves (1.1).

!  Continuous Genetic Algorithm in High Performance 
!  Fortran
!  Haupt and Haupt, 2003
!  credit to Jaymon Knight for translating and 
!  adapting program
!
MODULE funct
!Provides an explicit interface for user-defined
!functions and subroutines
!J. Knight June 2003

IMPLICIT NONE
CONTAINS

SUBROUTINE ff(A,X)
!_______________________________________________________
!  Cost Function - Insert your own cost functionhere -
!     This cost function is equation (1.1)
!       of Haupt and Haupt, 2003
!

Practical Genetic Algorithms, Second Edition, by Randy L. Haupt and Sue Ellen Haupt.
ISBN 0-471-45565-2 Copyright © 2004 John Wiley & Sons, Inc.
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!Input values are an array, output value is a vector
!containing the values of A evaluated using a cost 
!function.
!Calculates the standard deviation of a 1-d array.
!J. Knight
IMPLICIT NONE

REAL,INTENT(IN),DIMENSION(:,:)::A !Input array 
!(2-d)

REAL,INTENT(OUT),DIMENSION(:)::X!Output vector (1-
!d)

!HPF$ INHERIT A
!HPF$ INHERIT X

X=A(:,1)*SIN(4.*A(:,1))+1.1*A(:,2)*SIN(2.*A(:,2))

END subroutine ff

END MODULE funct
!=======================================================
!=======================================================
PROGRAM my_cga
! Main genetic algorithm program for Haupt and Haupt 
! 2003 -
! uses High Performance Fortran
! Purpose: Optimizes variables based on a cost 
! function using a
! genetic algorithm.  Based on pseudocode in 
! Haupt and Haupt, 1998
!
!    Date Programmer Description of Changes
! ========   ============= ======================
! 3July2003 Jaymon Knight Code based on seudocode
! 19Nov2003 Sue Haupt Revised for 2nd ed of 
! Haupt and Haupt
!
!
USE funct
USE hpf_library
IMPLICIT NONE

!Define parameters
!Define GA parameters
! Use these to tune the code to your problem

234 HIGH-PERFORMANCE FORTRAN CODE



INTEGER,PARAMETER::maxit=1000 !Maximum number of 
!iterations
INTEGER,PARAMETER::max_same=50 !Maximum# of 
!consecutively equal vals
INTEGER,PARAMETER::popsize=100 !Size of population
INTEGER,PARAMETER::npar=2 !Number of parameters
REAL,PARAMETER::tol=.01 !Percent error for stop 
!criteria
REAL,PARAMETER::mutrate=0.2 !Mutation rate
REAL,PARAMETER::selection=0.5 !Fraction of population 
!to keep
REAL,PARAMETER::lo=0. !Minimum parameter 
!value
REAL,PARAMETER::hi=10. !Maximum parameter 
!value

!Define variables
INTEGER::status !Error flag
INTEGER::how_big !Used in the
RANDOM_SEED subroutine
INTEGER::keep !Number kept from each 
!generation
INTEGER::M !Number of matings
INTEGER::nmut !Total number of 
!mutations
INTEGER::iga !Generation counter
INTEGER::i,j !Indices
INTEGER::same !Counter for 
!consecutively equal values
INTEGER::bad_sort !Counts number of bad 
!sorts from hpf grade_up
REAL::minc !Minimum cost
REAL::temp !Temporary variable
REAL::xy !Mix from ma and pa

!Define matrix variables
INTEGER,ALLOCATABLE,DIMENSION(:)::vals !Contains 
!values from the time/date call
INTEGER,ALLOCATABLE,DIMENSION(:)::seeds !Vector w/ vals 
!for RANDOM_SEED brtn
INTEGER,ALLOCATABLE,DIMENSION(:)::ind !Sorted indices 
!from cost function
INTEGER,ALLOCATABLE,DIMENSION(:)::ind2 !For sorting 
!mutated population
INTEGER,ALLOCATABLE,DIMENSION(:)::ma,pa !Parents
!(indices)
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INTEGER,ALLOCATABLE,DIMENSION(:)::xp !Crossover 
!point
INTEGER,ALLOCATABLE,DIMENSION(:)::ix !Index of mate 
!#1
INTEGER,ALLOCATABLE,DIMENSION(:)::mrow,mcol !Used for 
!sorting mutations
REAL,ALLOCATABLE,DIMENSION(:,:)::par,par2 !Matrix of 
!population values
REAL,ALLOCATABLE,DIMENSION(:)::cost !Cost function 
!evaluated
REAL,ALLOCATABLE,DIMENSION(:)::odds !Involved in 
!pairing
REAL,ALLOCATABLE,DIMENSION(:)::pick1,pick2 !Mates one 
!and two
REAL,ALLOCATABLE,DIMENSION(:)::temp_arr_1 !Temporary 
!1-d array
REAL,ALLOCATABLE,DIMENSION(:)::r !Mixing
!parameter

! These HPF directives allow parallel distribution of 
! arrays
!   They appear as comments to Fortran 90/95
!HPF$ DISTRIBUTE(BLOCK)::cost,odds,ix
!HPF$ ALIGN(:,*) WITH cost(:) ::par

!Calculate variables

keep=FLOOR(selection*popsize) !Number to keep 
!from each generation
M=CEILING(REAL(popsize-keep)/2.) !Number of matings
nmut=CEILING((popsize-1)*npar*mutrate) !Number of 
!mutations

!Allocate arrays (block 1)

ALLOCATE(cost(popsize),par(popsize,npar),par2(popsize, &
npar),ind(popsize),&
odds(keep+1),vals(8),ma(M),pa(M),pick1(M),pick2(M),r(M), &
xp(M), ix(CEILING(REAL(keep)/2.)),STAT=status)
IF(status/=0) THEN
WRITE(*,*)”Error allocating arrays in main &
& program.”
STOP

END IF
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!_______________________________________________________
!Initialize random number generator
!Some machines may require more care in calling the 
!random number generator
!  This program sets a seed randomly from computer 
!clock

CALL RANDOM_SEED(SIZE=how_big) !Finds the size 
!of array expected by subroutine
ALLOCATE(seeds(how_big),STAT=status)
IF(status/=0) THEN

WRITE(*,*)”An error occurred allocating the array &
‘seeds’ in the main program.”
END IF

CALL DATE_AND_TIME(VALUES=vals) !These values depend 
!on the current time
IF(vals(8)==0) THEN !We only want a non-
!zero value
vals(8)=vals(5)+vals(6)+vals(7) !Substitute in the 

!case of zero (HH+MM+SS)
END IF

CALL RANDOM_SEED !Initializes the seed
CALL RANDOM_SEED(GET=seeds) !Gets the seed
seeds=seeds*vals(8) !Adjusts seed so it is 
!different each time
CALL RANDOM_SEED(PUT=seeds) !Seeds the random 
!number generator

DEALLOCATE(vals,seeds)
!_______________________________________________________
!Create the initial population, evaluate costs, sort

CALL RANDOM_NUMBER(par) !Fills par matrix w/ 
!random numbers

par=(hi-lo)*par+lo !Normalizes values 
!between hi & lo

!_______________________________________________________
!Start generations

iga=0
minc=0.
same=0
bad_sort=0
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OPEN(UNIT=10,FILE=’data.dat’,STATUS=’REPLACE’,ACTION=’WR &
ITE’,IOSTAT=status)
IF(status/=0) THEN
WRITE(*,*)”Error opening file ‘out.dat’.”

END IF

DO WHILE(iga<maxit)

iga=iga+1 !Increment counter

CALL ff(par,cost) !Calculates cost using 
!function ff

ind=grade_up(cost,DIM=1) !Min cost in element 1, 
!order stored in ind
cost=cost(ind) !Cost in order stored in 
!ind

!WRITE(*,*)minc,cost(1),iga
IF(ABS((cost(1)-minc)/cost(1))<tol/100.) THEN &
same=same+1

ELSE
same=0

END IF

minc=cost(1)

par=par(ind,:) !Puts par in the order 
!stored in ind

!_______________________________________________________
!Pair chromosomes and produce offspring

odds(1)=0. !first spot is zero
!HPF$ INDEPENDENT !Fills remainder of 
!odds matrix w/ values keep-1
DO i=1,keep
odds(i+1)=keep+1-i

END DO

odds(2:keep+1)=SUM_PREFIX(odds(2:keep+1)) !weights 
!chromosomes based upon position in the list
temp=odds(keep+1)
odds(2:keep+1)=odds(2:keep+1)/temp
!Probablility distribution function
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CALL RANDOM_NUMBER(pick1) !mate #1
CALL RANDOM_NUMBER(pick2) !mate #2

! ma and pa contain the indices of the chromosomes 
! that will mate
!  Note: this part of code not done in parallel
DO i=1,M

DO j=2,keep+1
IF(pick1(i)<=odds(j) .AND. pick1(i)>odds(j-1)) THEN &
ma(i)=j-1
END IF
IF(pick2(i)<=odds(j) .AND. pick2(i)>odds(j-1)) THEN &
pa(i)=j-1
END IF

END DO
END DO

!_______________________________________________________
! Performs mating using single point crossover

i=0
!HPF$ INDEPENDENT
DO i=1,CEILING(REAL(keep)/2.)
ix(i)=2*i-1
END DO

!Allocate temporary array (block 2) (Subroutine 
!requires a real argument)
ALLOCATE(temp_arr_1(M),STAT=status)
IF(status/=0) THEN
WRITE(*,*)”Error allocating the arrays of allocation &
block 2 of the main program.”
STOP
END IF

CALL RANDOM_NUMBER(temp_arr_1)

xp=CEILING(temp_arr_1*REAL(npar))

DEALLOCATE(temp_arr_1)

CALL RANDOM_NUMBER(r)

par2=par
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DO i=1,M
xy=par2(ma(i),xp(i))-par2(pa(i),xp(i)) !mix from 

!ma & pa
par2(keep+ix(i),:)=par2(ma(i),:) !first 

!offspring variable
par2(keep+ix(i)+1,:)=par2(pa(i),:) !second 

!offspring variable
par2(keep+ix(i),xp(i))=par2(ma(i),xp(i))-r(i)*xy

!first offspring variable
par2(keep+ix(i)+1,xp(i))=par2(pa(i),xp(i))+r(i)*xy

!second offspring variable
IF(xp(i)<npar) THEN !Perform crossover when 

!last variable not selected
DO j=1,xp(i)
par2(keep+ix(i),j)=par2(keep+ix(i),j)
par2(keep+ix(i)+1,j)=par2(keep+ix(i)+1,j)

END DO
DO j=xp(i)+1,npar
par2(keep+ix(i),j)=par2(keep+ix(i)+1,j)
par2(keep+ix(i)+1,j)=par2(keep+ix(i),j)

END DO
END IF

END DO

par=par2
!_______________________________________________________
! Mutate the population

!Allocate arrays (block 3)
ALLOCATE(temp_arr_1(nmut),mrow(nmut),mcol(nmut),ind2 &
(nmut),STAT=status)
IF(status/=0) THEN
WRITE(*,*)”Error allocating the arrays of allocation &
block 3 of the main program.”
STOP
END IF

CALL RANDOM_NUMBER(temp_arr_1)
mrow=CEILING(temp_arr_1*(popsize-1))+1

ind2=grade_up(mrow,DIM=1)
mrow=mrow(ind2)

CALL RANDOM_NUMBER(temp_arr_1)
mcol=CEILING(temp_arr_1*npar)
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CALL RANDOM_NUMBER(temp_arr_1)
temp_arr_1=(hi-lo)*temp_arr_1+lo !Normalizes values 
!between hi & lo

!HPF$ INDEPENDENT
DO i=1,nmut
par(mrow(i),mcol(i))=temp_arr_1(i)
END DO

DEALLOCATE(mrow,mcol,temp_arr_1,ind2)
IF(MINVAL(cost)/=cost(1)) THEN
bad_sort=bad_sort+1
IF(bad_sort<=1) THEN
WRITE(10,*)cost

END IF
END IF

END DO

!_______________________________________________________

DEALLOCATE(par,par2,cost,ind,odds,pick1,pick2,ma,pa,r,xp &
,ix)
CLOSE(10)

WRITE(*,*)”There were”,bad_sort,”bad sorts using the &
hpf intrinsic ‘grade_up’.”
WRITE(*,104)iga,same,minc
104 FORMAT(I4,” iterations were required to obtain &
“,I4,” consecutive values of “,F12.5)

END PROGRAM my_cga
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This book has a mixture of biology, mathematics, and computer terms. This
glossary is provided to help the reader keep the terminology straight.

Allele The value of a gene. In biology, one of the functional forms of a gene.
Age of a chromosome The number of generations that a chromosome has

existed.
Ant colony optimization A global optimization method that mimics the

optimal path laid by ants to a food source.
Building block Short schemata that give a chromosome a high fitness and

increase in number as the GA progresses.
Chromosome An array of parameters or genes that is passed to the cost

function.
Coarse-grained genetic algorithm A parallel GA implementation in which

subpopulations are housed on individual processors and evolve separately
with limited communication between the subpopulations.Also known as an
island GA.

Cellular genetic algorithm A parallel GA implementation where each indi-
vidual is housed on its own processor and communication lines are limited
to the nearest neighbors. Also called fine grained.

Comma strategy The process in which the parents are discarded and the 
offspring compete.

Converge Arrive at the solution.A gene is said to have converged when 95%
of the chromosomes contain the same allele for that gene. GAs are con-
sidered converged when they stop finding better solutions.

Convergence rate The speed at which the algorithm approaches a solution.
Cooperation The behavior of two or more individuals acting to increase the

gains of all participating individuals.
Cost Output of the cost function.
Cost function Function to be optimized.
Cost surface Hypersurface that displays the cost for all possible parameter

values.
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Crowding factor model An algorithm in which an offspring replaces a 
chromosome that closely resembles the offspring.

Crossover An operator that forms a new chromosome from two parent 
chromosomes by combining part of the information from each.

Crossover rate A number between zero and one that indicates how 
frequently crossover is applied to a given population.

Cycle crossover A method of crossover for permutation problems in which
a point is initially chosen for exchange of genes between the parents; then
the remainder of the operator involves “cycling” through the parents to
eliminate doubles in the offspring.

Darwinism Theory founded by Charles Darwin that evolution occurs
through random variation of heritable characteristics, coupled with natural
selection (survival of the fittest).

Deceptive functions Functions that are difficult for the genetic algorithm to
optimize.

Diploid A pair of chromosomes carrying the full genetic code of an 
organism.

Dynamic parameter encoding The GA increases the binary precision with
time, or the GA keeps the same number of bits in a gene but narrows the
search space.

Elitism The chromosome with the best cost is kept from generation to 
generation.

Environment That which surrounds an organism.
Epistasis The interaction or coupling between different parameters of a cost

function. The extent to which the contribution to fitness of one gene
depends on the values of other genes. Highly epistatic problems are diffi-
cult to solve, even for GAs. High epistasis means that building blocks cannot
form, and there will be deception.

ES See evolution strategy.
Evolution A series of genetic changes in which living organisms acquire the

characteristics that distinguish it from other organisms.
Evolution strategy (ES) A type of evolutionary algorithm developed in the

early 1960s in Germany. It typically uses deterministic selection, crossover,
continuous parameters, and mutation.

Evolutionary algorithm Any computer program that uses the concept of 
biological evolution to solve problems. Examples include genetic algo-
rithms, genetic programming, evolutionary strategies, and evolutionary 
programming.

Evolutionary computation Design or calculations done using an evolution-
ary algorithm.

Evolutionary programming (EP) An evolutionary algorithm developed by
Lawrence J. Fogel in 1960. It typically uses tournament selection, continuous
variables, and no crossover.
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Extremum A maximum or a minimum.
Fine-grained GA A parallel GA implementation where each individual is

housed on its own processor and communication lines are limited to the
nearest neighbors. Often called cellular GA.

Fitness Opposite of cost. A value associated with a chromosome that assigns
a relative merit to that chromosome.

Fitness function Has the negative output of the cost function. Mathematical
subroutine that assigns a value or fitness to a set of variables.

Fitness landscape The inverted cost surface. The hypersurface obtained by
applying the fitness function to every point in the search space.

Fitness proportionate selection Chromosomes are assigned a probability of
selection based upon their rank in the population.

Function optimization Process of finding the best extremum of a function.
Function set A group of functions that are available for a GP to use.
Gamete Cells with haploid chromosomes that carry genetic information

from their parents for the purposes of sexual reproduction. In animals, male
gametes are called sperm and female gametes are called ova.

Gene The binary encoding of a single parameter. A unit of heredity that 
is transmitted in a chromosome and controls the development of a 
trait.

Gene flow Introduction of new genetic information by introducing new indi-
viduals into the breeding population.

Gene frequency The incidence of a particular allele in a population.
Generation One iteration of the genetic algorithm.
Generation gap A generation gap algorithm picks a subset of the current

population for mating.
Genetic algorithm (GA) A type of evolutionary computation devised by

John Holland. It models the biological genetic process by including
crossover and mutation operators.

Genetic drift Changes in gene/allele frequencies in a population over many
generations, resulting from chance rather than selection. Occurs most
rapidly in small populations. Can lead to some genes becoming “extinct,”
thus reducing the genetic variability in the population.

Genetic programming (GP) Genetic algorithms applied to computer 
programs.

Genotype The genetic composition of an organism. The information con-
tained in the genome.

Genome The entire collection of genes (and hence chromosomes) possessed
by an organism.

Global minimum True minimum of the entire search space.
Global optimization Finding the true optimum in the entire search 

space.
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Gray code Binary representation of a parameter in which only one bit
changes between adjacent quantization levels.

Hamming distance The number of bits by which two codes (chromosomes)
differ.

Haploid chromosome A chromosome consisting of a single sequence of
genes. The number of chromosomes contained in the gamete. Half the
diploid number.

Hard selection When only the best available individuals are retained for 
generating future progeny.

Heterozygous The members of a gene pair are different.
Hillclimbing Investigates adjacent points in the search space, and moves in

the direction giving the greatest increase in fitness. Exploitation techniques
that are good at finding local extrema.

Homozygous Both members of a gene pair are the same.
Hybrid genetic algorithm A genetic algorithm combined with other opti-

mization techniques.
Individual A single member of a population that consists of a chromosome

and its cost function.
Inversion A reordering operator that works by selecting two cut points in a

chromosome, and reversing the order of all the genes between those two
points.

Island genetic algorithm A parallel GA implementation in which subpopu-
lations are housed on individual processors and evolve separately with
limited communication between the subpopulations. Also referred to as
course-grained GA.

Kinetochore The random point on a chromosome at which crossover 
occurs.

Lamarckism Theory of evolution that preceded Darwin’s. Lamarck believed
that evolution resulted from the inheritance of acquired characteristics.The
skills or physical features acquired by an individual during its lifetime can
be passed on to its offspring.

Lifetime How many generations a chromosome stays in the population until
it is eliminated.

Local minimum A minimum in a subspace of the search space.
Master–slave genetic algorithm A parallel GA implementation in which the

primary control is maintained by a master processor and cost function eval-
uations are sent out to slave processors. Also known as global, panmictic,
or micrograined GA.

Mating pool A subset of the population selected for potential parents.
Meiosis The type of cell division that occurs in sexual reproduction.
Messy genetic algorithm Invented to conquer deceptive functions. The first

step (primordial phase) initializes the population so it contains all possible
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building blocks of a given length. In this phase only reproduction is used 
to enrich the set of good building blocks. The second step (juxtaposition
phase) uses various genetic operators to converge.

Micro genetic algorithm A GA that uses small populations sizes.
Migration The transfer of the genes of an individual from one subpopula-

tion to another.
MIMD Multiple instructions, multiple data. A parallel computer with each

processor working independently on its own data
Mitosis Reproduction of a single cell by splitting. Asexual reproduction.
Multimodal Cost surface with multiple minima.
Multiple objective optimization (MOO) Optimization in which the objective

function returns more than a single value.
Mutation A reproduction operator that randomly alters the values of genes

in a parent chromosome.
Mutation rate Percentage of bits in a population mutated each iteration of

the GA.
Natural selection The most-fit individuals reproduce, passing their genetic

information on to their offspring.
Nelder-mead downhill simplex algorithm A nonderivative, robust local opti-

mization method developed in 1965.
Neural network An algorithm modeling biological nervous systems consist-

ing of a large number of highly interconnected processing elements called
neurons that have weighted connections called synapses.

Niche The survival strategy of an organism (grazing, hunting, on the ground,
in trees, etc.). Species in different niches (e.g., one eating plants, the other
eating insects) may coexist side by side without competition. If two species
occupy the same niche, the weaker species will be made extinct. Diversity
of species depends different niches or geographical separation. Each peak
in the cost function is analogous to a niche.

Objective function The function to be optimized.
Object variables Parameters that are directly involved in assessing the rela-

tive worth of an individual.
Off-line performance An average of all costs up to the present generation.

It penalizes the algorithm for too many poor costs, and rewards the algo-
rithm for quickly finding where the lowest costs lie.

Offspring An individual generated by any process of reproduction.
On-line performance The best cost found up to the present generation.
Optimization The process of iteratively improving the solution to a problem

with respect to a specified objective function.
Order-based problem A problem where the solution must be specified in

terms of an arrangement (e.g., a linear ordering) of specific items, for
example, traveling salesperson problem, computer process scheduling.
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Order-based problems are a class of combinatorial optimization problems
in which the entities to be combined are already determined.

Order crossover (OX) A crossover method for dealing with a permutation
operator that strives to preserve portions of the absolute ordering of each
parent.

Ontogeny The developmental history (birth to death) of a single organism.
Panmictic genetic algorithm A parallel GA implementation in which the

primary control is maintained by a master processor and cost function eval-
uations are sent out to slave processors. Also known as a master–slave GA.

Parallel genetic algorithm A genetic algorithm written to run on a parallel-
processing computer.

Parent An individual that reproduces to generate one or more other indi-
viduals, known as offspring, or children.

Pareto front All Pareto optimal solutions for a given problem.
Pareto genetic algorithm A GA whose population approximates the Pareto

front.
Pareto optimal A point is Pareto optimal if decreasing the cost of one cost

function causes an increase in cost for at least one of the other cost 
functions.

Parse tree A method of following the flow of a computer program.
Partially matched crossover (PMX) A reordering operator where two

crossover points are chosen, the values between these points exchanged,
then a careful procedure followed to eliminate any repeated numbers from
the solution.

Particle swarm optimization A global optimization method that mimics the
optimal swarm behavior of animals such as birds and bees.

Performance Usually some statistical evaluation of the cost or fitness over
all generations.

Permutation problem A problem that involves reordering a list.
Phenotype The environmentally and genetically determined traits of an

organism. These traits are actually observed.
Phylogeny The developmental history of a group of organisms.
Plus strategy The process in which the parents and offspring compete.
Point mutation Alters a single feature to some random value.
Population A group of individuals that interact (breed) together.
Quadratic surface Bowl-shaped surface.
Random seed A number passed to a random number generator that the

random number generator uses to initialize its production of random
numbers.

Rank selection Chromosomes are assigned a probability of selection based
on their rank in the population.
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Recombination Combining the information from two parent chromosomes
via crossover.

Reordering Changing the order of genes in a chromosome to try to bring
related genes closer together and aid in the formation of building blocks.

Reproduction The creation of offspring from two parents (sexual reproduc-
tion) or from a single parent (asexual reproduction).

Reproduction operator The algorithmic technique used to implement 
reproduction.

Roulette wheel selection Picks a particular population member to be a
parent with a probability equal to its fitness divided by the total fitness of
the population.

Scaling Used to bring the range of costs into a desirable range. Often used
to make all the costs positive or negative.

Schema (pl. schemata) Bit pattern in a chromosome. For instance, the pat-
terns 1100110 and 1000011 both match the schema 1**0011, where * indi-
cates a 1 or a 0.

Schema theorem A GA gives exponentially increasing reproductive trials to
schemata with above average fitness. Because each chromosome contains
a great many schemata, the rate of schema processing in the population is
very high, leading to a phenomenon known as implicit parallelism. This
gives a GA with a population of size N a speedup by a factor of N cubed,
compared to a random search.

Search space All possible values of all parameters under consideration.
Search operators Processes used to generate new chromosomes.
Seeding Placing good guesses to the optimum parameter values in the initial

population.
Selection The process of choosing parents for reproduction (usually based

on fitness).
Selection pressure Ratio of the probability that the most fit chromosome is

selected as a parent to the probability that the average chromosome is
selected.

Self-adaptation The inclusion of a mechanism to evolve not only the object
variables of a solution but simultaneously information on how each solu-
tion will generate new offspring.

Simple genetic algorithm A GA with a population, selection, crossover, and
mutation.

Simulated annealing A stochastic global optimization technique derived
from statistical mechanics.

Single-point crossover A random point in two chromosomes (parents) is
selected. Offspring are formed by joining the genetic material to the right
of the crossover point of one parent with the genetic material to the left of
the crossover point of the other parent.
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Simulation The act of modeling a process.
SISD Single instruction, multiple data. A parallel computer performing the

same operation, on different items of data at the same time in lockstep.
Soft selection Some inferior individuals in a population are allowed to

survive into future generations.
Speciation The process of developing a new species. The most common form

of speciation occurs when a species is geographically separated from the
main population long enough for their genes to diverge due to differences
in selection pressures or genetic drift. Eventually the genetic differences are
great enough for the subpopulation to become a new species.

Species A group of organisms that interbreed and are reproductively iso-
lated from all other groups. A subset of the population.

Stagnation The algorithm no longer finds an improved solution, even though
it has not found the best solution.

Steady state genetic algorithm Every new offspring produced replaces a
high-cost chromosome in the population.

Subpopulation A subset of the main population in which individuals may
only mate with others in the same subset.

Survival of the fittest Only the individuals with the highest fitness value
survive.

Tabu search A search algorithm that keeps track of high-cost regions, then
avoids those regions.

Terminal set Variables and constants that are available for manipulation by
the GP.

Test function A cost or fitness function used to gauge the performance of a
GA.

Tournament selection Picks a subset of the population at random, then
selects the member with the best fitness.

Truncation selection Chromosomes whose cost is below a certain value (the
truncation point) are selected as parents for the next generation.

Two-point crossover A crossover scheme that selects two points in the chro-
mosome and exchanges bits between those two points.

Uniform crossover Randomly assigns the bit from one parent to one off-
spring and the bit from the other parent to the other offspring.

250 GLOSSARY



A
Air pollution model 175
Allele 20
Analytical optimization 7
Ant colony optimization (ACO) 18,

190
Antenna 81
Art 71
Artificial neural networks 179
Attractor 170

B
Beowulf cluster 144
Binary crossover 42, 110
Binary GA 27, 135
Binary GA flowchart 29
Binomial 83
Blending 57
BLX-a 58
Bracketing 3
Broyden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm 17, 164

C
Cellular GA 140
Chromosome 19, 30, 35
Chromosome age 118
Chromosome life 118
Cognitive parameter 190
Complementary sampling 117
Constraints 4, 31
Continuous crossover 56, 111
Continuous GA 51, 135
Continuous GA flowchart 52
Continuous optimization 4
Contraction 11

Convergence 47, 64, 107
Cooling schedule 188
Coordinate search 13
Cost function 30
Cost function reformulation 83
Cost function weighting 99
Cost weighting 40
Creative process 74
Crossover mask 112
Crossover point 42, 57, 105, 197
Crossover rate 117
Cultural algorithms 199
Cycle crossover (CX) 126, 152

D
Davidon-Fletcher–Powell (DFP)

algorithm 17
De Jong test functions 128
Decoding a secret message 155
Demes 139
Discrete optimization 4
Dispersion law 177
Dogs 28
Dominant gene 90
Dominating solution 100
Dynamic optimization 4
Dynamical problems 170

E
Elitism 43, 61
Emergency response unit 77, 153
End-effector 159
Epistasis 32
Evolution 19
Evolutionary strategies 18, 199
Exhaustive search 5
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F
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G
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GA advantages 23
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Gene 19
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Genetic programming (GP) 195
Genotype 20
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Gradient 8, 15
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H
Hamming distance 104
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Hybrid GA 101

I
Identical chromosomes 95
Initial population 27, 54, 96, 117
Injection island GA 140
Integer programming 10
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J
Juxtaposition 137

K
Korteweg-de Vries equation 182

L
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Laplacian 8
Learning factor 190
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Linear programming 9
LISP 196
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M
Mary Had a Little Lamb 67
Master-slave algorithm 138
Mating 41, 56, 197
MATLAB 211
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Metagenetic algorithm 129
Migration rate 139
Minimum-seeking algorithms 5
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Multiple objective optimization 97
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N
Natural optimization 18, 54
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Nondominated sorting GA 100
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T
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U
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